AFWAL-TR-85-1016 VOL V @

14 FILE COPY

VALIDATION (E&V)

Hn

-

© TEAM PUBLIC REPORT
g‘)’ Volume V

N

<

(@) RAYMOND SZYMANSKI

< E&V TEAM CHAIRMAN

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

October 1990

Interim Technical Report for Period

01 January 1989 - 01 September 1990

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

PREPARED FOR: D T l C

ADA* JOINT PROGRAM OFFICE ELECTE
3D 139 (FERN ST/C107) PENTAGON MAR 1 5 1991,

WASHINGTON, D.C. 20301

91 3 11 ¢29

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely related
Government procurement operation, the United States Government
thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication or otherwise as in any manner
licensing the holder or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

This report has been reviewed by the office of Public Affairs,
(ASD/PA) and is releasable to the National Technical Information
Service (NTIS). If NTIS, it will be available to the general public,
including foreign nations.

This technical report has been reviewed and is approved for
publication.

{MW 26 Toponto, /770

Raymond Szymanski
Project Engineer

FOR THE COMMANDER:

Charles H. Krueger
Director
System Avionics Division

If your address has changed, if you wish to be removed from our
mailing list, or if the addressee is no longer employed by your
organization, please notify WRDC/AAAF, WPAFB, OH 45433-6543 to help
us maintain a current mailing list.

Copies of this report should not be returned unless return is
required by security considerations, contractual obligation, or
notice on specific document.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for Public Release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Distribution Unlimited

4, PERFORMING ORGANIZATION REPORT NUMBER(S)

AFWAL~TR-85-1016, Vol V

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Wright Research and

Development Center

6b. OFFICE SYMBOL
(If applicable)

WRDC/AAAF-3

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State, and ZIP Code)

Wright-Patterson Air Force Base,
OH 45433-6543

7b. ADDRESS (City, State, and ZiP Code)

8a. NAME OF FUNODING /SPONSORING
ORGANIZATION

Ada* Joint Program Office

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)
3D139 (Fern Street/Cl107) Pentagon
Washington, D.C. 20301

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK_UNIT
ELEMENT NO. | NO. NO. ACCESSION NO.
63226 AJPO 28 53

11. TITLE (Include Security Classification)

Evaluation and Validation (E&V) Team Public Report, Volume V

12. PERSONAL AUTHOR(S)
Raymond Szymanski, E&V Team Chairman

13a. TYPE OF REPORT 13b. TIME COVERED
Interim Technical

FrROM 1 JAN 89ro 30Sep90

15. PAGE COUNT
454

14. DATE OF REPORT (Year, Month, Day)
1990 October 31

16. SUPPLEMENTARY NOTATION

*Adz is a Registered Trademark of the U.S. Government (Ada Joint Program Office)

17, COSATI CODES
FIELD GROUP SUB-GROUP Ada*
09 02 Evaluation
Validation

18. SUBJECT TERMS (Continue on reverse if necessary and identity by block number)
Common APSE Interface Set (CAIS)

Ada Programming Support Environment (APSE)

for FY1989 and FY1990.

industry, and academia.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Activities and accomplishments of the evaluation and Validation (E&V) Team are reported
The purpose of the E&V Task, which is sponsored by the Ada Joint
Program Office (AJPO), is to develop techniques and tools that will provide a capability
to perform assessment of Ada Programming Support Environments (APSEs) and to determine

conformance of APSEs to the Common APSE Interface Set (CAIS).
developed, it is being made available to Department of Defense (DoD) compunents,

As this technology is

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
T unciassinepunumited X1 SAME AS RPT.

] oTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL
Raymond Szymanski

22b. TELEPHONE (Include Area Code)
(513) 255-3548

22¢. OFFICE SYMBUL
WRDC/AAAF-3

DO Form 1473, JUN 86

Previous editions are ohsolete.

SECURITY CLASSIFICATION OF THIS FAGE

Unclassified

SECTION

APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

APPENDIX
APPENDIX

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

o O o X

Z =2 rr X o

0

Project Technical Summary

TABLE OF CONTENTS

NAECON Paper

New E&V Reference System Flyer
The E&V’'ing News

ooooooooooooo

oooooooooooooooo

Issues and Strategies for Evaluation and

Validation of CAIS-A Implementations

Final Report:

Evaluation Capability (ACEC)

E&V Task Presentations

Independent Validation and
Verification (IV&V) on the Ada Compiler

ooooooooooooo

Abstract of Supporting Selection Decisions Based
on the Technical Evaluation of Ada Environments

and Their Components

Tools & Aids Document

Minutes
Minutes
Minutes
Minutes
Minutes
Minutes

Minutes

of the
of the
of the
of the
of the
of the
of the

E&V Team Meeting December 1988

E&V Team Meeting February 1989

E&V Team Meeting June 1989

E&V Team Meeting September 1989 . .
E&V Team Meeting December 1989

E&V Team Meeting March 1990

E&V Team Meeting May 1990

ooooooooooooo

oooooooooooooo

Accession For

NTIS GRASI & |

DTIC TAB O
Unannocunced]
Justification 1

By._.

Distribution/

Avallability Codes
Avail and/er

Diat Special

SECTION 1
PROJECT TECHNICAL SUMMARY
1.1 Introduction

This report is the fifth in a series of technical reports to be published by
the Evaluation and Validation (E&V) Project. The purpose of the E&V Public
Report is to provide an overview of the many technical accomplishments of the
E&V Project and E&V Team during an appropriate time frame. This fifth report
contains information resulting from E&V activities during December 1988 to
September 1990 which is being made available for public review and comment.
Contents of this report reflect an observation of the E&V Project and E&V Team
progress during the specified time frame and should not be viewed as final
representations of the technology being developed.

1.2 Background

In June 1983, the Ada Joint Program Office (AJPO) proposed the formation of
the E&V Task and a tri-service Ada Program Support Environment (APSE) E&V
Team, with the Air Force designated as lead service. In October 1983, the Air
Force officially accepted responsibility as lead service on the E&V Task.

The Ada community, including Government, industry, and academic personnel,
needs the capability to assess APSEs and their components, and to determine
their conformance to applicable standards (e.g., DOD-STD-1838, the Common APSE
Interface Set (CAIS) standard). The technology required to fully satisfy this
need is extensive and largely unavailable; it cannot be acquired by a single
Government sponsored, professional society sponsored, or private effort. The
purpose of the Evaluation and Validation Task is to provide a focal point for
addressing the need by:

(1) Identifying and defining specific technology requirements,

(2) Developing selected elements of the required technology,

(3) Encouraging others to develop some elements, and

(4) Collecting information describing elements which already exist.

This information will be made available to Department of Defense (DoD)
components, other Government agencies, academic institutions, and industry.

1.3 E&V Project Summary for the Reporting Period
The E&V Project accomplished several tasks during the period 01 January 1989

through 01 September 1990 which are summarized in subsections 1.3.1 - 1.3.4.
Additional details can be found later in this report.

1.3.1 Evaluation and Validation Reference System

The E&V Reference System is a set of two complementary documents, the E&V
Reference Manual and the E&V Guidebook, which provides detailed information on
Ada Programming Support Environments and their assessment. The E&V Reference
System Version 1.1 was released in late November 1988. This version has been
gistributed to a growing number of DoD agencies and the worldwide Ada
community. Shortly after this release, work began on Version 2.0. In order
to better serve the community of E&V Reference System users, a questionnaire
was mailed out to those individuals who received copies of Version 1.0. This
feedback substantially affected Version 2.0, particularly in the development
and inclusion of additional evaluation checklists in the Guidebook section of
the Reference System.

Distribution of the E&V Reference Manual Version 2.0 commenced in November of
1989. The current list of recipients numbers well over five hundred and users
include every major DoD contractor, many commercial software development
companies, and a substantial number of DoD agencies.

1.3.2 Ada Compiler Evaluation Capability (ACEC)

The Ada Compiler Evaluation Capability is a set of tests, test scenarios, and
support tools which enable the user to determine the performance and usability
characteristics of an Ada compilation system. The distribution of ACEC
Version 1.0 was begun in October 1988. Since that time it has been delivered
to over ninety users. These include DoD program offices, DoD laboratories,
DoD contractors, and Ada compiler vendors. A partial 1list of the users and
their projects are contained in the Presentation Material section of ¢his
report. Although not shown on that list, many Ada compiler vendors use the
ACEC to exercise their products before releasing them for production use.

In May 1990, ACEC Version 2.0 distribution was begun. Version 2.0 contains an
additional 300 performance tests and assessors for the program library system,
diagnostic messages, and symbolic debugger. Also included is a Single System
Analysis Tool for the comparison of related tests executed on a single system
and enhanced user documentation. Plans for ACEC Version 3.0 are now complete.
Details of these plans are contained later in this report.

1.3.3 CAIS Implementation Validation Capability (CIVC)

CIVC Version 1.0 is a set of tests, test scenarios, and support tools which
enable the user to determine conformance of a CAIS (DOD-STD-1838)
implementation to the CAIS standard. CIVC Version 1.0 was released January
1990 and is being used by the North Atlantic Treaty Organization (NATO)
Special APSE verification contractor. This version has been updated as an
interim version for use with DOD-STD-1838A implementations. The interim
CIVC-A version is also scheduled for use on the NATO Special APSE.

Development of a validation suite for DOD-STD-1838A implementations is
expected to be completed in January 1992. This version, CIVC-A, will
initially exploit the interim CIVC-A version and an interface coverage test
selection criteria for its production. This version will also use the

hypertext traceability technology developed for the CIVC effort. The
hypertext tool will provide the CIVC-A developer/user with traceability
between test requirements, test scenarios, and test cases, and can be used to
determine test suite coverage.

1.3.4 Ada Compiler Quality Testing Service Procedures

In June 1988, the House Appropriations Committee directed the Ada Joint
Program Office to "include efficiency testing in compiler validating
procedures.” In response to this the AJPO has developed a draft document
titled "Ada Compiler Quality Testing Service Procedures" which would guide the
Ada compiler evaluation process should a testing facility be established. The
current draft of this document was significantly influenced by members of the
E&V Team during and between E&V Team meetings. (Much of the Team discussion
on this topic is reflected in the meeting minutes contained herein.) Although
no formal action has yet been taken on establishing a Quality Testing Service,
the Procedures document rates as one of the major accomplishments of the E&V
Team and E&V Project for the reporting period.

1.4 E&V Meetings

E&V Team meetings are held on a quarterly basis. For the period covered by
this report quarterly meetings were conducted on the following dates:
5-7 December 1988, 21-24 February 1989, 6-8 June 1989, 6-8 September 1989, and
4-7 December 1989.

1.5 E&V Team Organization

In order to coordinate all of the activities within the E&V Task, the E&V Team
is partitioned into six working groups. The identification of these working
groups, and their associated areas of responsibility, are delineated in the
following sections. These working groups are subject to change during the
life of the E&V Task. Each working group has a desigrated Chairperson and
Vice-Chairperson. It is the responsibility of each working group Chairperson
to coordinate the activities of the working group with the E&V Team
Chairperson. In addition, each working group Chairperson is required to brief
the status of the respective working group at every E&V Team meeting.

1.5.1 Directional Management Working Groups
1.5.1.1 E&V Requirements Working Group (REQWG)
The REQWG is responsible for the following tasks:

- Maintain an E&V Requirements Document against which the E&V
Reference Manual will be developed.

- Provide analysis of requirements in the E&V Requirements Document
to determine their adequacy, completeness, traceability,
testability, consistency, and feasibility.

Identify issues which may impact the development of E&V
technology.

Provide recommendations for acquisition of E&V tools and aids
through the development of an E&V Tools and Aids Document.

Prepare position papers through the duration of the E&V Task which
address issues on E&V requirements.

1.5.1.2 E&V Standards Evaluation and Validation Working Group (SEVWG)

The SEVWG is responsible for the following tasks:

Recommend specific areas of consideration for standards related to
future evaluations and validations.

Emphasize study on the CAIS.

Review the development of the CAIS and identify areas of possible
concern to E&V.

Provide presentations to the E&V Team on the CAIS.

Prepare position papers throughout the duration of the E&V Task
which address particular aspects of the CAIS as relevant to E&V.

1.5.2 Technical Management Working Groups

1.5.2.1

E&V Ada Compiler Evaluation Capability Working Group (ACECWG)

The ACECWG is responsible for the following tasks:

1.5.2.2

Provide a formal interface between the Ada community and the ACEC
effort.

Evaluate and critique aspects of the technical approach being
employed on the ACEC effort.

Evaluate and critique selected ACEC deliverables.

Discuss and provide feedback on issues critical to the ACEC.

E&V CAIS Implementation Validation Capability Working Group (CIVCWG)

The E&V CIVCWG is responsible for the following tasks:

Provide technical expertise to E&V chairman and team for review of
CIVC contractors’ products and activities.

Provide to E&V chairman and CIVC project engineer recommendations
regarding validation of CAIS.

Coordinate regularly and closely with SEVWG concerning validation
of DOD-STD-1838 implementations.

1.5.2.3 E&V Classification Working Group (CLASSWG)

The CLASSWG is responsible for the following tasks:

Serve as focal point for analysis of Reference System (Reference
Manual and Guidebook).

Solicit information and recommendations regarding E&V technology.
Classify E&V technology.

Aid in the technology transition of the Reference System.
Delineate whole APSE issues.

Recommend new areas of investigation.

1.6 Conclusion

This E&V Public Report is being made available by the E&V Team in order to
solicit comments from those individuals who are not actively involved in the

E&V Task.

A1l comments should be addressed to:

Raymond Szymanski

WRDC/AAAF-3

Wright-Patterson AFB, Ohio 45433-6543

(SZYMANSK@GAJPO.SEI.CMU.EDU or
EV-TEAMRGAJPO.SEI.CMU.EDU)

APPENDIX A

Evaluation and Validation of Ada Programming
Support Environments: 5 Years After

Raymond Szymanski
Wright Research and Development Center (WRDC/AAAF-3)
Wright-Patterson Air Force Base, OH 45433-6523

ABSTRACT

This paper provides information on the Evaluation and Validation (E&V) Task
sponsored by the Ada Joint Program Office (AJPO). Included is a rationale for
the program, a description of objectives, and a summary of active projects.
With the recent proliferation of Ada Programming Support Environment (APSE)
tools, compilers in particular, it is important to have the capability to
select the proper tools for the intended application. To address this complex
problem, the E&V Task uses several mechanisms including the E&V Team composed
of Government representatives and distinguished reviewers from industry and
several E&V-technology development contracts. These elements actively
interact to ensure that all E&V products address the needs of the Ada E&V
community.

INTRODUCTION

The Ada Joint Program Office was formed in December 1980. It is the principal
Department of Defense (DoD) agent for development, support, and distribution
of tools, common libraries, and coordination of Ada activities within the DoD.
The AJPO coordinates all Ada efforts within the DoD to ensure their
compatibility with the requirements of the services and DoD agencies, to avoid
duplicative efforts, and to maximize sharing of resources.

In June 1983, the AJPO proposed the formation of the E&V Task and a tri-
service APSE E&V Team with the Air Force designated as lead service. In
October 1983, the Air Force officially accepted responsibility as lead service
on the E&V Task with the Air Force Wright Aeronautical Laboratory (now known
as Wright Research and Development Center) as the lead organization. Since
June 1985, the E&V Task has been led by Mr. Raymond Szymanski of the Avionics
Laboratory.

THE NEED FOR EVALUATION AND VALIDATION TECHNOLOGY

The Ada community including Government, industry, and academic personnel,
needs the capability to assess APSEs and their components and to determine
their conformance to applicable standards (e.g., DOD-STD-1838, the CAIS
standard). The technology required to fully satisfy this need is extensive
and largely unavailable; it cannot be acquired by a single Government
sponsored, professional society sponsored, or private effort.

The purpose of the E&V Task is to provide a focal point for addressing the
need by (1) identifying and defining specific technology requirements, (2)
developing selected elements of the required technology, (3) encouraging
others to develop other elements, and (4) collecting information describing
existing elements. This information will be made available to DoD components,
other Government agencies, industry, and academia.

Technology for the assessment of APSEs and APSE components (tools) is needed
because of the importance of the decisions to be supported by these
assessments and because of the difficulty of making these assessments. The
importance of the decision to select an APSE (or the approach to incremental
development of an APSE) is evident when one considers the large, critical,
Ada-based systems to be developed in the coming years. The effectiveness,
reliability, and cost of these systems will be strongly influenced by the
environments used to develop and maintain them. From the point of view of a
software developing organization, the decision to select an APSE can be an
important investment decision with long lasting influence on a number of
projects and the organization’s methods of operation, training, and
competitiveness.

The difficulty of assessing APSEs and tools is evident for several reasons.
First, an APSE represents complex technology with many elements which can be
assessed individually or in combination. Second, there is a confusing
diversity of choice with respect to individual tools, tool sets, or "whole
APSEs;" and third, there are a number of ways of viewing APSEs. The state of
the art of APSE architecture and of some categories of tools is undergoing

A-3

rgpid change (e.g., graphic design tools). Finally, there is a lack of
historical data relevant to APSEs, partly because of the general pace of

%echno]ogical change and partly because Ada is a relatively new implementation
anguage.

In addition to the need for assessment technology, there is a need for
information about this technology. Potential buyers and users of APSEs and
tools need a framework for understanding APSEs and their assessment as well as
information about specific assessment techniques. Similarly, vendors of tools
and APSEs need to be aware of the deficiencies of current products as well as
the criteria to be used in the assessment of future products. Such awareness
by both producers and consumers of APSE products, expressed in a common
terminology, will accelerate the development of better software environments.

OBJECTIVES AND ACTIVITIES

In order to accomplish the purpose of the E&V Task, several specific
objectives have been identified. These are discussed next with descriptions
of activities that will enable the E&V Task to meet these objectives.

1. Develop Requirements for E&V

As a prerequisite to the development of APSE E&V technology, E&V requirements
must be specified. The development of E&V requirements will be based upon
examination of APSE related issues such as life-cycle methodologies, human
engineering aspects, software engineering practices, etc. The E&V
requirements which are developed will be used to guide the E&V technical
effort.

The currently defined set of E&V requirements are contained 1in the E&V
Requirements Document, Version 2.0. This document is part of the E&V Team
Public Report, Volume III, which is available through the Defense Technical
Information Center as AD Number A196 164.

2. Develop APSE Evaluation Capability

An evaluation capability will be developed for some APSE components for which
no formal standards exist (i.e., MIL-STD, ANSI, etc.). The evaluation
capability for some components will be provided through established metrics;
whereas, the evaluation capability for other components may be limited to a
detailed questionnaire. As a first step toward achieving this objective, an
Ada Compiler Evaluation Capability is being developed which will enable the
user to compare the performance of different Ada compilers. Details of this
effort will be presented later.

3. Develop APSE Validation Capability

A validation capability will be developed for the Common APSE Interface Set
(CAIS), DOD-STD-1838, which has been developed under AJPO sponsorship. As
other APSE related standards are established (i.e., 1838A), appropriate
validation capabilities will be considered for development. Examination of
the current validation procedures and the Ada Compiler Validation Capability

A-4

(ACVC) test suite utilized by the Ada Validation Organization (AVO), as well
as procedures implemented by ANSI and ISO, will be used as a foundation. The
CAIS Operational Definition (CAIS OD) work at Arizona State University will
provide a baseline from which a validation capability may be evaluated. At
present, a validation suite for DOD-STD-1838 is under development. Plans are
also being established for a validation suite for proposed DOD-STD-1838A. The
1838 validation suite effort will be detailed later in the paper.

4. Develop Evaluation & Validation Tools and Aids

As the requirements for E&V are determined, various software tools/aids will
be identified as essential to the E&V effort. Such tools/aids include test
sets, test scenarios, data reduction capability, and other designated means of
automated support. As these tools/aids become more clearly defined, an
assessment will be made to include such capability. Existing tools/aids which
are applicable to the E&V Task will be considered for use. A document titled
"E&V Tools and Aids" details the E&V Team’s deliberations and recommendations
on this subject and is available in the E&V Team Public Report, Volume III.

5. Provide Initiative and Focal Point with Respect to APSE E&V

A focal point is needed for APSE developers and users with regard to
information about E&V of APSEs. APSE E&V questions arise frequently within
professional societies and user groups. A forum is needed in which APSE E&V
questions can be addressed and discussed, and in which APSE E&V information
can be disseminated throughout the Ada community.

The E&V Team, through its quarterly meetings, will provide a focal point for
APSE E&V for the Ada community. Public reports on the results of this
activity will be made available to professional organizations such as SIGAda
and AdaJUG. This is in keeping with the AJPO philosophy of public
dissemination of information. The E&V task is the lead DoD effort with regard
to APSE E&V. In this respect, the E&V Team will participate in, and assist
where possible, other programs technically related with APSE E&V. Such
programs include the Ada Validation Organization and international development
efforts. To ensure that its activities are relevant to the entire Ada
community, the E&V task will continue to allow distinguished reviewers from
industry to attend the quarterly E&V Team meetings.

6. Promote Community Use and Acceptance of the E&V Effort

Use of the E&V technology developed through this task will provide for an
orderly progression of technology insertion into user environments. The E&V
technology thus developed will be extendable to other software development
efforts, thereby maximizing the economic benefits of the E&V task products and
minimizing the cost within DoD and industry of doing E&V related work.

In addition to the E&V Team products mentioned above, the E&V Task is
responsible for three major contractual efforts. These include the Ada
Compiler Evaluation Capability (ACEC), the E&V Reference System, and the CAIS
Implementation Validation Capability (CIVC). As part of each development
effort, the E&V contractors provide quarterly briefings to E&V Team meeting

A-5

partjcipants. This information is generally used during the E&V Team’s
working group sessions during which the presentation issues are discussed in
detail as a form of feedback from the E&V community. The following sections

provide brief technical descriptions of the ACEC, the E&V Reference System,
and the CIVC.

E&V TECHNOLOGY DEVELOPMENTS
APSE E&V REFERENCE SYSTEM

The E&V Reference System is a coordinated set of documents comprised of the
E&V Reference Manual, Version 1.1, and the E&V Guidebook, Version 1.1. They
provide information about APSEs and their assessment.

The E&V Reference Manual establishes common terminology and a framework for
understanding APSEs. It includes a Life-Cycle Activities Index, a Tool
Category Index, a Function Index, and an Attribute Index. Each index entry
contains a definition, cross references to entries in the same or other
indices, and pointers to relevant sections in the E&V Guidebook. As a stand-
alone document, it is intended to help users find information about index
elements and relationships among them. In conjunction with the Guidebook, it
is intended to help users find criteria, metrics, and methods for assessment
of APSEs and their components.

The E&V Guidebook provides descriptions of specific instances of assessment
technology. These include evaluation (assessment of performance and quality)
or validation (assessment of conformance to a standard) techniques. For each
category of item to be assessed (e.g., compilation system, test system, whole
APSE, etc.), there are descriptions of various techniques such as test suites,
questionnaires, checklists, and structured experiments. The Guidebook also
contains synopses of documents of general historical importance to the field
of Ada environments and their assessment.

ADA COMPILER EVALUATION CAPABILITY (ACEC)

The Ada Compiler Evaluation Capability is a product which enables users to
determine the performance characteristics of Ada compilation systems. The
ACEC includes the ACEC Software Product and three supporting documents: the
ACEC User’s Guide, the ACEC Version Description Document (VDD), and the ACEC
Reader’s Guide.

The ACEC Software Product consists of both operational software and support
software. The operational software is a suite of performance test programs
which makes it possible to (1) compare the performance of several Ada compiler
implementations, (2) isolate the strong and weak points of a specific system
relative to other systems which have been tested, (3) determine what
significant changes were made between releases of a compilation system, and
(4) predict performance of alternate coding styles.

The ACEC tests provide assistance in measuring execution time efficiency, code
size efficiency, and compile time efficiency. The test suite does not
explicitly cover tests for usability, capacity, or existence of language
features. However, in the course of exercising the test suite, these items

A-6

may be covered. The support software consists of a set of tools and
procedures which assist in preparing the test suite for compilation, in
extracting data from the results of executing the test suite, and in analyzing
the performance measurements obtained. The support software consists of the
following tools:

INCLUDE -- assists in adapting programs to particular targets by performing
source test inclusion;

FORMAT -- extracts timing and code expansion data; and
MEDIAN -- compares results of performance tests of various systems.

The ACEC Software Product was developed for uniprocessor, uniprogramming
target systems and is distributed on one 9-track, 1600 bpi, VAX/VMS backup
tape.

The ACEC User’s Guide provides ACEC users with the information necessary to
adapt and execute the ACEC Software Product. This guide explains how to use
the support tools and how to deal with problems which may occur in the process
of executing the ACEC Software Product. The ACEC Reader’s Guide describes how
users can interpret the results of executing the benchmark test suite, the
statistical significance of the numbers produced, the organization of the test
suite, and how to submit error reports and change requests. The ACEC Version
Description Document describes the ACEC Software Product as contained on the
distribution tape. This product includes the compilation units, programs,
test problems, specific language features and optimizations, and sample data.

CAIS IMPLEMENTATION VALIDATION CAPABILITY (CIVC)

The goal of the CAIS is to promote interoperability and transportability of
Ada software across APSEs used by the DOD. Those Ada programs that are used
in support of software development and lifecycle maintenance are defined as
"tools." The CAIS, more formally known as DOD-STD-1838, is a document
produced under AJPO sponsorship that defines the Ada package specifications
for interfaces to those services, traditionally provided by operating systems,
that significantly impact tool transportability. A second evolutionary step
towards a full, state-of-the-art interface definition is currently under
Government review. This proposed standard, DOD-STD-1838A, is an upgraded and
more complex set of interfaces with compatibility to DOD-STD-1838.

The objective of the "CAIS Implementation Validation Capability" (CIVC) is to
develop usable and reliable validation test suites for CAIS and CAIS-A
implementations. The purpose of this validation capability is to test
conformance of an implementation of the CAIS to the standard. The rationale
for such a capability is to increase the reliability, usability, and
acceptability of such a standardized interface set.

The CIVC contract provides for the development and delivery of a CIVC test
suite and associated support products. The contractor will develop a taxonomy
suitable for evolutionary development of the validation capability and deliver
an integrated hypertext-based requirements traceability product to facilitate
assessment of the completeness of the validation capability.

A-7

The CIVC Test Administrator will provide a convenient and reliable user-
interface to the validation capability. This feature will facilitate
application of the CIVC by both CAIS developers and CAIS users. The hypertext
product provides an interactive vehicle for analyzing the connection between
(1) requirements (paragraphs in DOD-STD-1838), (2) test objectives (developed
from the requirements), (3) test scenarios (test design definitions), and
(4) actual test cases (Ada code).

The CIVC contract has recently completed critical design review (CDR) and has
moved into the development phase where test cases, the Test Administrator
code, and associated traceability documentation will be produced. The initial
operational capability is scheduled for delivery in the fourth quarter of this
year (4th Q, 1989).

E&V TASK OUTLOOK

To date, considerable progress has been made in the areas of E&V problem
definition and creating solutions to those problems in the form of E&V
technology developments. This author believes that many challenges in this
area still exist and will exist for some time to come. The E&V task is
scheduled to continue through 30 September 1991 when the last contractual
effort terminates. Hopefully, a far-sighted organization within the Air Force
will understand the importance of the E&V effort and will continue where the
current effort leaves off.

OBTAINING E&V INFORMATION

The ACEC documentation described above is available in hardcopy form or as a
package distributed in Latex format on one 9-track, 1600 bpi, VAX/VMS backup
tape.

Please note that all ACEC products are subject to the DoD Directive 5230.25,
Withholding of Unclassified Technical Data from Public Disclosure, which
limits the distribution of unclassified export-controlled technical data to
organizations certified as qualified contractors by the Defense Logistics
Services Center (DLSC). It is not necessary for Government activities to be
DLSC certified.

To order the ACEC software and documentation, please contact the Data &
Analysis Center for Software at the following address:

Data & Analysis Center for Software
RADC/COED
Griffiss AFB NY 13441-5700

ATTN: Document/Dataset Ordering
(315) 336-0937

A-8

To obtain information concerning the availability of E&V products such as the
E&V Reference System, the CIVC, or E&V Team documents, send your name and
address (electronically preferred) to: szymansk@ajpo.sei.cmu.edu, or by

regular mail to: Mr Raymond Szymanski, WRDC/AAAF, Wright-Patterson AFB OH
45433-6523.

About the author, Raymond Szymanski: Mr. Szymanski is currently the Program
Manager for the Evaluation and Validation (E&V) of Ada Programming Support
Environments (APSEs) Task sponsored by the Ada Joint Program Office. In
addition to administering technical contracts for the E&V effort,
Mr. Szymanski is also the Chairman of the E&V Team. He has given
presentations at various technical forums including SIGAda, AdaJUG, Ada Europe
(Edinborough), and the Ada Board (former member).

A-9

APPENDIX B -- New Documents Available --
APSE E&V REFERENCE SYSTEM

The Ada Programming Support Environment (APSE) Evaluation and Validation (E&V) Reference System is
a pair of documents developed, and periodically updated, by the APSE E&V Task, sponsored by the Ada
Joint Program Office and led by the US Air Force Avionics Laboratory. The documents are entitled the
"E&V Reference Manual" and the "E&V Guidebook."

APSE E&V Task Purpose — The Ada community needs the capability to assess APSEs and their
components, and to determine their conformance to applicable standards. The technology required to

fully satisfy this need is extensive and largely unavailable. The purpose of the APSE E&V Task is to
provide a focal point for addressing this need by (1) identifying and defining specific technology
requirements, (2) developing selected elements of the required technology, (3) encouraging others to
develop some of these elements, (4) collecting information describing existing elements, and (5) making
E&V technology information available to government agencies, industry, and academia.

E&V Reference Manual ~ The manual provides a framework for understanding APSEs and their
assessment, and establishes common terminology. One chapter discusses an APSE as a whole and its
assessment. Other chapters are indexes to APSE component characterization and assessment, organized
by life cycle activities, APSE tool category, APSE function, and attribute to be assessed. An entry in an
index consists of a description, cross references to other entries in the Reference Manual, and cross
references to the °"E&V Guidebook." The manual is intended to help a variety of users obtain answers to
their questions. As a stand-alone document it is intended to help a user find useful information about
index elements and relationships among them. In conjunction with the Guidebook, it is indended to help
users find criteria and metrics for assessment of APSEs and their components.

E&V Guidebook -- The Guidebook provides descriptions of specific instances of assessment
technology. These include evaluation (assessment of performance and quality) and validation
(assessment of conformance to a standard) techniques. For each category of item to be assessed (e.g.
compilation system, test system, whole APSE, etc.), there are brief descriptions of applicable tools and
aids -- such as test suites, questionnaires, checklists, and structured experiments -- and references to
primary documents containing detailed descriptions. The Guidebook also contains synopses of documents
of general historical importance to the entire field of Ada environments and their assessment.

E&V Task Products and Schedule
E&V Reference Manual -- Version 2.0, DTIC (or NTIS) No. AD-A214 167; 3.0 (Nov 90)
E&V Guidebook -- Version 2.0, DTIC (or NTIS) No. AD-A214 166; 3.0 (Nov 90)

Ada Compiler Evaluation Capability (ACEC) test suite -- Version 2 (call DACS)
CAIS-A Implementation Validation Capability(CIVC) tests -- TBD

MAILING LIST FOR E&V PRODUCTS

If you would like to receive instructions for obtaining the E&V Reference System documents and other
E&V products as they become available, attach your business card or fill in your name and address and
send to Mr. Raymond Szymanski, WRDC/AAAF, Wright Patterson AFB, OH 45433-6523. .

Name

Address

APPENDIX C

2o

Sy

Volume 1.0

The E&YV Task

The Evaluation & Validation (E& V) Task, under the direction of
Ray Szymanski, WRDC, provides a focal point for addressing
APSE asscssment needs by (1) identifying and defining specific
technology requirements, (2) developing selected clements of
the required technology, (3) encouraging others to develop other
elements, and (4) collecting information describing existing
clements. This information is being made available to DoD
componcnts, other government agencies, industry, and acade-
mia. To mecct these needs the E&V Task has identified six
guiding objectives. These include (1) Develop requirements for
E&V technology, (2) Develop APSE evaluation capabilitics, (3)
Develop APSE validation capabililities, (4) Develop additional
E&V tools and aids, (5) Provide afocal point for APSEE& V, and
(6) Promotc community use and acceptance of E& V technology.

E&YV REFERENCE SYSTEM

The E&V Reference System consists of two companion docu-
ments: the E&V Reference Manual and the E&V Guidebook.
The purposc of the E&V Reference Manual is to provide infor-
mation that will help users to: (1) Gain an overall understanding
of APSEs and approaches to their asscssment, (2) Find uscful
relerence information (c.g., definitions) about specific clements
and rclationships between clements, and (3) Find criteria and
metrics for assessing tools and APSEs, and techniques for per-
forming such assessments.

The purpose of the E&V Guidebook is to provide information
that will help users to assess APSEs and APSE componcnts by:
(1) Assisting in the selection of E&V procedures, the interpre-
tation of results, and integration of analyses and results, (2)
Describing E&V procedures and techniques developed by the
E&V Task, and (3) Assisting in the location of E&V procedurcs
and techniques developed outside the E&V Task.

All E&V procedures and techniques found in the E&V Guide-
book are relerenced by the indices contained in the E& V Refer-
ence Manual,

Initial versions of the E&V Reference Manual and E& V Guide-
book were distributed in the Fall of 1988. In response to
comments received via the E&V Reference Sysiem Question-

C-1

October 1989

naire, Version 2 of the Reference System has been enhanced by
the incorporation of a number of new checklists and additional
references to emerging E&V Technology. Version 2 is sched-
uled for release this fall. Yearly updates of the E&V Refcrence
System are planned. Constructive comments and pointers 10
E&YV technology, not currently in the E&V Reference System,
arc always welcome.

CIVC

Version 1.0 of thc CAIS Implementation Validation Capability
(CIVC) is ncaring completion. Formal testing for the CIVC
begins in carly December, 1989 with gencral availability in
carly 1990. The CIVC will provide a reliablc and uscful
capability for validation of DoD-STD-1838. Includcd in the
initial release will be over 200 individual testcases, an integratcd
and versatile test manager, and a hypertext product (the Frame-
work) to provide traceability between the standard (DoD-STD-
1838), the taxonomy, and the actual test cases. Future work
under this contract activity will focus on development of a
validation capability for MIL-STD-1838A.

ACE

Version 1.0of the Ada Compiler Evaluation Capability (ACEC)
has been distributed by DACS to scveral dozen sites since its
rclcascin October 1988. Version 2.0 is scheduled to bedelivered
to the government in December 1989, 294 new performance
tests arc being added along with an asscssment capability for
three new f{unctional arcas; diagnostics, the debugger, and the
program library system. It will also provide a tool to assist in
analyzing the performance of a single compilation system.
Problem reports received for Version 1.0 are being reviewed for
inclusionin Version 2.0. ACEC usersarc encouragedioprovide
feedback on their experiences and submit error reports as appro-
priate to Mr. Raymond Szymanski at the address below.

FOR INFORMATION ON E&V
PRODUCTS CONTACT:

RAYMOND SZYMANSKI1

WRDC/AAAF-3
WPAFB, OH 45433-6543
PHONE: (513) 255-3947
NET: szymansk@ajpo.sei.cmu.edu

TS
S

The E&V Task

The Evatuation & Validation (E& V) Task, under the direction
ol Ray Szymanski, WRDC, providcs a focal point for address-
ing. APSE assessment needs by (1) identifying and defining
speeific technology requirements, (2) developing sclecied
clements of the required technology, (3) encouraging others to
devclopotherclements, and (4) collecting information describ-
ing cxisting clements. This information is being made avail-
ablc 1o DoD components, other government agencics, industry,
and academia. To mcct these needs the E&V Task has
identificd six guiding objectives. These include (1) Develop
requircments for E&V technology, (2) Develop APSE cvalu-
ation capabilitics, (3) Dcvelop APSE validation capabililities,
(4) Develop additional E& 'V tools and aids, (5) Provide a focal
point for APSE E&V, and (6) Promole community use and
acceptance of E&V technology.

E&V REF ESYSTEM

The E& V Reference System consists of two companion docu-
ments: the E&V Refercnce Manual and the E& V Guidebook.
The purpose of the E&V Reference Manual is to provide infor-
mation that will help users to: (1) Gain an overall understand-
ing of APSEs and approaches 1o their assessment, (2) Find
uscful reference information (e.g., definitions) about specific
clements and relationships between elements, and (3) Find
criteria and metrics for assessing tools and APSEs, and tech-
niques for pcrforming such assessments.

The purpose of the E&V Guidebook is to provide information
that will help users to assess APSEs and APSE components by:
(1) Assisting in the selection of E&V procedures, the interpre-
tation of rcsults, and intcgration of analyses and results, (2)
Describing E&V procedures and techniques developed by the
E&V Task, and (3) Assisting in the location of E&V proce-
durcs and tecchniques developed outside the E&V Task.

AN E&V proccdures and techniquces found in the E&V Guide-
book are rcferenced by the indices contained in the E&V Ref-
crence Manual.

Initial versions of the E&V Reference Manual and E&V
Guidcbook were distribuied in the Fall of 1988, In responsc to
comments reccived viathe E&V Rceference System Question-

E«Ving
NEWS

December 1989

naire, Version 2 of the Relcrence System has been enhanced
by the incorporation of a number of new checklists and addi-
tional references to emerging E&V Technology. Version 2
was rclcased in November 1989. Yearly updates of the E&V
Reference System arc planned. Constructive comments and
pointers to E&V technology, not currently in the E& V Refer-
ence System, arc always welcome.

C1vVC

Version 1.0 of the CAIS Implecmentation Validation Capabil-
ity (CIVC) is ncaring complction. Formal testing for the CIVC
begins in carly December, 1989 with genceral availability in
carly 1990. The CIVC will provide a rcliable and uscful
capability for validation of DoD-STD-1838. Included in the
initial relcasc will be over 200 individual test cascs, an inte-
grated and versatile test manager, and a hypertext product (the
Framework) to provide traccability between the standard
(DoD-STD-1838), the taxonomy, and the actual test cases.
Future work under this contract activity will focus on develop-
ment of a validation capability for MIL-STD-1838A.

ACEC

Version 1.00f the Ada Compiler Evaluation Capability (ACEC)
has been distributed by DACS to several dozen sites since its
rclcase in October 1988. Version 2.0 is scheduled to be
delivered to the government in carly 1990, Over 300 new per-
formance tests are being added along with an assessment
capability for thrce new functional arcas; diagnostics, the de-
bugger, and the program library system. It will also provide a
tool to assist in analyzing the performance of a single compi-
lation system. Problem reports received for Version 1.0 are
being reviewed for inclusion in Version 2.0. ACEC uscrs are
encouraged to provide feedback on their expericnces and
submit crror reports as appropriate to Mr. Raymond Szyman-
ski at the address below.

FOR INFORMATION ON E&V
PRODUCTS CONTACT:

RAYMOND SZYMANSKI

WRDC/AAAF-3
WPAFB, OH 45433-.6543
PHONE: (513) 255-3947
NET: szymansk@ajpo.sei.cmu.edu

c-2

APPENDIX D

Issues and Strategies for Evaluation
and Validation of CAIS-A
Implementations

Based on the April 6, 1989
MIL-STD-1838-A

February 1, 1990

Prepared by:
The Standards Evaluation and Validation Working Group
of the APSE Evaluation and Validation Team

Working Paper -- Not Approved. This is an unapproved draft and subject
to change. Do not specify or claim conformance to this document. AIll
information distributed to the E&V Team is to be considered for E&V Team use
only, and should not be distributed within a reviewer’s organization for
review and comment.

The Task for Evaluation and Validation of Ada Programming Support
Environments (APSE’s) is sponsored by the Ada Joint Program Office.

D-1

TABLE OF CONTENTS

Section Page
1.0 INTRODUCTION e e e e e e e e e e e e e e 3
1.1 Objective ¢ ¢ i i i i et e e e e e 3
1.2 Background - E&V Team ¢ . . ¢« .o v 3
1.3 Standards Evaluation and Validation Working Group 3
1.4 CAIS-A: A Transportability Platform for APSE Tools 4
2.0 SCOPE @ i e 5
2.1 Document Background e e e . 5
2.2 Basis for Identifying Issues 5
3.0 APPROACH &« i i i e e e e e et e e e e e e e e e e e 6
4.0 CIVC-A COST ANALYSIS v v i v v v v d e e e e e e e 7
4.1 Additional Interfaces and Functionality 7
4.2 Additional Functionality in Existing Interfaces 7
4.3 The Number and Size of Anticipated Tests 7
5.0 TEST SELECTION CRITERIA FOR CIVC-A« .« o v o . 9
5.1 Requirements of Test Selection Criteria 9
5.2 Facilities that Implementors are Likely to Omit 10
5.3 Facilities Most Critical to Transportability 10
5.4 Facilities Most Likely to Apply to Both CAIS and CAIS-A . . . 11
5.5 A Random Sampling Across Facilities 11
5.6 Facilities That Achieve Broadest Implementation Coverage . . . 12
6.0 REVIEW BOARD AND FAST REACTION TEAM« v ¢ v v 13
7.0 CAIS-A EVALUATION CAPABILITY ¢« . ¢« ¢ v v v v v v v v v 14
7.1 Performance Tests ¢ ¢ ¢ v v v v v v v e e e 14
7.2 Alternative Approaches ¢« 0 o oo v v e e 15
8.0 CAIS-A EVALUATION VALIDATION POLICY 17
9.0 AUTOMATICALLY GENERATE TEST CASECODE « « ¢« v v o 18
9.1 Develop a Scenario Description Language 18
9.2 Scenario Dependency Analysis « « .« ¢« o o o 000 19
9.3 Translator from Scenario Descriptions to Ada 19
10.0 DEVELOP A NEW TAXONOMY OR CIVC-A « ¢ v v v v v v o 20
11.0 MAINTENANCE OF THE CIVC-A TEST SUITE« v o o .. 22
12.0 SUMMARY RECOMMENDATIONS v ¢ v v v v v v v v o v v & 23
APPENDIX A - ACRONYMS & o o v et e e e e e e e e e e e e 25
APPENDIX B - SEVWG MEMBERSHIP ¢ o o v v o v v v v 26
APPENDIX € - REFERENCES ¢ v v v v v v e e e v e 27

D-2

1.0 INTRODUCTION
1.1 Objective

This document is intended to provide insights and guidelines for the
analysis and validation of implementations of the Common Ada Programming
Support Environment Interface Set, MIL-STD-1838A (CAIS-A) [CAIS-88]. In this
document, the key issues to validating CAIS-A implementations are identified
and discussed. Where possible, we identify approaches to resolve these
issues. An earlier version of this document [IAS-88] identified issues
relative to the January 1985 version of CAIS. Many of the issues discussed
relative to January 1985 CAIS are relevant to CAIS-A, these are not restated
herein; instead, we discuss only those issues relevant to the design changes
resulting in CAIS-A.

The analysis reported in this document was performed by the Standards
Evaluation and Validation Working Group (SEVWG) of the APSE Evaluation and
Validation (E&V) Team, whose membership appears in Appendix B.

1.2 Background - E&V Team

In 1983 the AJPO formed the Task for Evaluation and Validation of Ada
Program Support Environments (E&V Task) and a tri-service APSE E&V Team,
with the Air Force designated as lead service. The overall goal of the E&V
Task is to develop the techniques and tools which provide a capability to
perform assessment of APSEs and to determine conformance of APSEs to relevant
standards. As the E&V technology is developed, it is made available to the
community for use by DOD organizations, industry, and academia as deemed
appropriate by the respective organizations. The E&V Task is developing
technology to evaluate specific APSE components, including CAIS-A. The
soecific components and evaluators are enumerated in the E&V Team Requirements
document [REQ-87] and they include components such as compilers, editors,
command language interpreters, and debuggers.

The Air Force has been tasked as the lead service on this effort.
Hence, the majority of E&V Team members are Air Force personnel. Air Force
Wright Research and Development Center (WRDC) is lead organization for the
E&V Task and the E&V Team Chairperson is a WRDC representative.

1.3 Standards Evaluation and Validation Working Group (SEVWG)

The E&V Team is divided into working groups. The Standards Evaluation
and Validation Working Group(SEVWG) is chartered to provide a forum for the
evaluation and validation of current, proposed and future Ada Programming
Support Environment (APSE) related standards and their implementations.
Included in this charter is the identification of issues relating to
validating conformance to an APSE related standard and suggesting approaches
for achieving conformance. Further, the SEVWG is concerned with evaluating
all aspects of standards implementations. SEVWG considers both technical and
non-technical aspects of APSE related standards.

D-3

1.4 CAIS-A: A Transportability Platform for APSE Tools

CAIS-A is a set of Ada package interfaces designed to enhance the
transportability and interoperability of Ada software engineering environment
tools and data. The scope of the CAIS-A includes the functionality affecting
transportability that is needed by tools, but not provided by the Ada
language. In addition to a general entity management system for APSE tools,
the CAIS-A contains definitions for primitive entities for manipulating
devices, files and processes. CAIS-A is based on an entity-relationship
approach and it allows the user to define entities, in a limited way, by means
of a typing mechanism. CAIS-A also includes functionality to support tools
requiring transaction processing, a rudimentary triggering mechanism and
explicit control over APSE distribution.

The CAIS-A was developed by SofTech under contract to the Naval Ocean
Systems Center. CAIS-A is a design enhancement of the existing DOD Standard
CAIS (1838) [CAIS-86.] CAIS 1838 was developed by the Kernel APSE (KAPSE)
Interface Team and the KAPSE Interface Team for Industry and
Academia(KIT/KITIA) as a first evolutionary step towards a full, state-of-the-
art interface standard. CAIS-A is viewed as the next step in that
evolutionary process.

The KAPSE Interface Team (KIT), a tri-service organization chaired by
the Navy under the guidance of the AJPO, was established in late 1981 as the
result of a Memorandum of Agreement signed by the Deputy Under Secretary of
Defense and the Assistant Secretaries of the three services. The KIT
completed its work in 1988. The KAPSE Interface Team from Industry and
Academia (KITIA) was established in early 1982. The KITIA consisted of
volunteer representatives from industry and academia who provided technical
expertise and review capability to the KIT. The objective of the KIT/KITIA
was to define a standard set of Kernel Ada Programming Support Environment
(KAPSE) interfaces to ensure the interoperability of data and the
transportability of tools between conforming APSE’s. The CAIS DOD-STD-1838,
developed by the KIT/KITIA, provides a common kernel interface for tools
requiring device, file, and process manipulation.

In addition to the KIT/KITIA’s development of the CAIS 1838, other
efforts have contributed to the foundation of the E&V Task. One such effort
was the formation of the Ada Validation Organization (AV0O), under the
direction of the AJPO. The AVO is responsible for the development of an Ada
Compiler Validation Capability (ACVC) which is in use to determine that Ada
compiler developers have consistently implemented the standard Ada language,
ANSI/MIL-STD-1815A [ADA-83]. A second effort which contributes to the E&V
task is the derivation of a taxonomy for an APSE, which systematically
defines tool capabilities for a full APSE. A third effort, performed at the
Air Force WRDC, provided an initial evaluation mechanism for Ada compilation
systems; called, the Ada Compiler Evaluation Capability (ACEC). Finally,
previous efforts sponsored by the AJPO, at Virginia Tech and Arizona State
University have addressed various techniques for the validation of Ada
software interfaces.

D-4

2.0 SCOPE
2.1 Document Background

The SEVWG is composed of a representative spectrum of potential CAIS-A
users and implementors from academia, government, and industry. The diversity
of users possess different perspectives on the CAIS-A which include:

0 Funding agencies and end user’s of tools who are principally
concerned with maximizing tool transportability and who are
motivated by the need to obtain a reliable mechanism for
encouraging and establishing the use of CAIS-A-based technology;

0 APSE and tool developers concerned with the flexibility,
efficiency, and completeness of the CAIS-A standard and the ease
or difficulty of using it as a means of achieving enhanced tool
functionality; and

(] CAIS DOD-STD-1838 developers that are concerned with developing
validation tests consistent with the intent of the current
standard CAIS-A, current operational definition efforts, and
anticipated future enhancements.

The earlier version of this document, which was released in 1988,
covered the CAIS as it existed just prior to its standardization as DOD-STD-
1838. That document raises issues and outlines approaches to validation and
evaluation of CAIS, most of which still apply to the CAIS-A. This document
has been produced as an increment to the earlier release [IAS-87], and it does
not iterate those issues covered earlier,

2.2 Basis for Identifying Issues

This document addresses the analysis, evaluation, and validation of
the CAIS-A. Consequently, sections in this document require access to and an
understanding of the CAIS-A. This dccument enumerates many of the issues
and problems that should be considered for validation and evaluation of the
CAIS-A implementations, and potential solutions are presented as appropriate.
This document does not provide a complete or comprehensive set of issues or
solutions to these issues. The scope of this document includes issues arising
from design decisions resulting in the CAIS-A. Included in these design
changes are transaction mechanisms, typing, extensions to the node model,
explicit control of distribution and a triggering mechanism.

D-5

3.0 APPROACH

The initial three chapters of this document present introductory
material including some of the motivation for the E&V Team, the SEVWG, and the
creation of this document. The last chapter contains summarized
recommendations regarding resolving the issues discussed in the document.
CAIS-A validation and evaluation issues are presented in separate chapters
beginning with Chapter Four. Validation issues may be either technical or
programmatic in nature. The topics included in the evaluation discussion
include those necessary for determining the performance features of a given
CAIS-A implementation as well as other aspects relevant to selecting a CAIS-A
platform. ihe appendices of this document detail items such as acronyms, SEVWG
membership and references.

This document is of interest to the designers or modifiers of the CAIS
standard. It also provides limited insights to certain problem areas for those
interested in implementing the CAIS-A. The CAIS-A validation contractor will
also benefit from these preliminary investigations, as will those who are
developing a prototype evaluation capability for entire APSE’s. The first and
foremost application of this decument is the communication of this information
within the E&V Team itself, and between the E&V Team and directly related
activities and organizations. These include:

1. E&V Technical Support Contractor

2. CAIS-A Implementation Validatior Capability(CIVC) Contractor

3. Government funded CAIS-A developers.

This document is also intended as a vehicle to communicate these issues
to other interested organizations, which consist primarily of government

agencies and contractors considering the utilization or development of CAIS-A
implementations or CAIS-A-resident tool-sets.

D-6

4.0 CIVC-A COST ANALYSIS

An immediate concern to SEVWG upon receiving and reviewing the Proposed
CAIS-A set of interfaces is the additional complexity and resulting additional
effort generating, administering and executing a validation mechanism for this
new set of interfaces. In total, the document has increased in size from
roughly 600 pages for CAIS to roughly 1200 pages for CAIS-A. For various
reasons, one of course cannot outright compare complexity of CAIS-A to CAIS
based on document length. Further, we expect that any expansion in the
document is attributable not only to added facilities and complexity, but also
to clarifying and detailing existing functionality. Nevertheless, the
expanded size and scope of CAIS-A over CAIS will certainly have an impact on
the ability to develop, manage, execute and maintain a validation (and
evaluation) capability for CAIS-A. In this section, we try to classify the
differences in the evolution from CAIS to CAIS-A. In doing so, we indicate
the impact on validation.

4.1 Additional Interfaces and Functionality

In an early draft of CAIS-A, the number of interfaces, excluding
overloads, had increased well over 100. In the most general sense, the
functionality added includes a permissive typing mechanism (including type
definitions, type checking and alternative views of type identifiers,)
transactions, attribute monitors, distribution, access control, a more general
Input Output model and several changes in the basic node model. Of these,
typing transactions and changes to the basic node model have the largest
impact on validation.

4.2 Additional Functionality in Existing Interfaces

Several interfaces in CAIS-A were already in CAIS. These interfaces,
however, often have additional functionality imposed by added features.
Additional functionality isn’t necessarily accompanied by additional
parameters or exceptions. For example, addition of the typing model has made
a modest increase in the number of interfaces, primarily to define and
manipulate definition and view nodes. But, a majority of the functional
changes are distributed across existing interfaces. The added functionality
for typing can generally be referred to as the semantics of type checking.
Other functional changes that alter existing interfaces includes adding
multiple keys for relationships, manipulating unique identifiers for nodes,
bidirectional relationships and case sensitivity. Now, CAIS-A comparisons are
case insensitive, but case is preserved.

4.3 The Number and Size of Anticipated Tests

SEVWG has discussed an estimation of the number of validation tests that
might be needed for CAIS-A based on the existing draft specification and on
the estimated number of test objectives required for 1838 (roughly 8000.) We
agreed that it would be counter productive to include this form estimation
since we have based it on unreliable assumptions. SEVWG does, however, have

two recommendations regarding the cost to develop and execute a validation
mechanism for CAIS-A.

0-7

Several factors can be identified through the development of CIVC that
could be very useful in estimating the cost to produce a validation mechanism
for CAIS-A. These include; the number of test objectives identified per
interface, the number of test objectives identified per specification
paragraph, the number of scenarios per test objective, the number of scenarios
per test case and the number of Ada/CAIS source statements per test case.
SEVWG recommends that SofTech include in the development of CIVC, as one of
its primary responsibilities, a gathering of this information as it is
pertinent to formulating and estimating the needed resources for CIVC-A, as
well as its future evaluation. A cost estimate for CIVC-A will be most
accurate when it is obtained with information recorded by SofTech regarding
the above factors. It would also be of benefit to record the resources
required (personnel, machine, etc.) and directly attributable to the
development of test objectives (identification, development, documentation,
review, and configuration management), scenarios, framework, and the test
cases themselves.

- SEVWG also emphasizes the development of reusable tests in CIVC phase 1
development. Although it is currently apparent that this awareness exists, it
would be helpful to document a transition plan for CIVC indicating how
products associated with CIVC can be adapted to CIVC-A. That plan would
further be useful in future evolution and maintenance of CIVC-A.

D-8

5.0 TEST SELECTION CRITERIA FOR CIVC-A

SEVWG views that one of the more important issues regarding the
development of CIVC-A is the method used to select test objectives. CIVC
limited its scope to Chapter 4 (General Requirements) tests. The decision to
start with Chapter 4 was influenced by SEVWG as well as the desire to augment
related efforts to generate test sets for CAIS, for example MITRE and Arizona
State University. Chapter 4 contains functionality applicable throughout the
CAIS, and no other efforts are working in this area. Included in Chapter 4
are relationship management, pathname syntax, access control mechanisms and
basic node concepts. These facilities are required by process control, node
management, input/output, etc. (virtually the remainder of CAIS). SEVWG
agrees, however, that creating CIVC-A using such a narrow focus would only
serve to encourage partial implementations of CAIS-A. Thus, this section
looks at alternative approaches to selecting tests and considers how they
should be implemented.

5.1 Requirements of Test Selection Criteria

Various requirements apply specifically to the context of generating a
validation set for kernel interfaces such as CAIS-A.

1. Development of the test suite must employ several test selection
criteria in order to balance test suite costs (development,
administration and maintenance) with interface implementation
objectives (transportability, implementation completeness and
architecture suitability.)

2. Criterion must be capable of accommodating a prioritized
development scheme in which criteria may be prior tized for
greater emphasis.

3. The selection criteria must allow selection of tests from the same
representation of CAIS-A (e.g., the SofTech Taxonomy.)

4. The test selection process must be amenable to assessing test
coverage. Preferably, coverage should be assessable with respect
to a named criterion as well as providing for a unified analysis
of coverage which considers the entire suite.

5. Tests selected from different criterion must be capable of being
managed together with those selected from other criteria.

6. Test selection criteria must be implementable. That is, there
must exist in current technology the ability to select tests based
on a criterion. Although implementability is in reality a scale,
certain criterion are considerably less implementable than others.
For instance, the criterion: "select tests best able to
distinguish complete CAIS-A implementations" is currently not
implementable. Without having several CAIS-A implementations and
a history of successful and unsuccessful validations, one cannot

determine which tests distinguish successful from unsuccessful
implementations.

D-9

. Several test selection criteria have been identified by SEVWG, most of
yhlch we believe have the potential of conforming to these requirements. These
include (listed in no specific order) selecting tests for:

1. Facilities that encourage complete implementations,

2 Facilities most critical to transportability of CAIS-A tools,
3. Facilities in CAIS-A common to other tool interfaces,

4 A random sampling across facilities,

5. Facilities that achieve broadest coverage.

SEVWG has discussed each of these selection criteria in detail and has
no single recommended criterion that we feel should be used. The following
subsections discuss in order, methods we’ve discussed regarding techniques for
implementing each criterion in selecting tests to be implemented in the suite,
our recommendation as to which criteria should be used, and finally, a
presentation of the remaining issues regarding how to balance the selection
criteria with available resources for CIVC-A development.

5.2 Facilities That Encourage Complete Implementations

Some CAIS-A interfaces have small visible syntax, but require extensive
implementation detail or have complex semantics. This might include, for
instance, path name pattern matching in iterators, or other complex interfaces
such as COPY_TREE. One aspect of this criterion is that there are certain
facilities in CAIS-A which have only a small syntactic interface to the CAIS-A
user, but which require extensive functionality to implement. Validation
tests that exercise this functionality are more likely to distinguish among
conforming implementations and encourage complete implementations. SEVWG
supports focusing some validation tests in areas where CAIS-A semantics are
complex. Well-chosen tests of facilities that are commonly used by tools, but
for which there exist complex semantics can only aid in achieving the goals of
CAIS-A.

Drawing on criterion used by testing services, one approach would be to
incorporate tests most likely to predict success in the overall validation
test suite. That is, supposing that there are 15,000 possible test objectives
in CAIS-A and that only 5,000 are to be developed into test programs. Then,
one would want to select the 5,000 revealing the most information. Those
tests most often failed by non-conforming implementations would be most
revealing regarding correct implementation of the standard. The primary
problem with this approach as applied to CAIS-A is that it is difficult to
implement. Empirical data is needed revealing the success rate of
implementations on each test program. Test programs that are the most
valuable are those that are failed by an implementation that fails very few
others. That is, the most revealing test programs are those that in isolation
predict the validation results. Thus, implementation of this technique tends
to discard test programs from the validation suite that are not good
predictors and incorporate new test cases that reveal more about the
implementation. This concept is appealing, and is recommended by SEVWG for
use in maintaining the suite rather than in original development.

D-10

5.3 Facilities Most Critical to Transportability of CAIS-A Tools

This criterion selects tests for interfaces that are deemed most
critical to transportability. While the objective of CAIS-A is to enhance the
transportability of tools, certain aspects of CAIS-A have a larger impact on
transportability of most tools than other aspects of CAIS-A. For example,
using this criterion, one might focus on Input and Output interfaces and on
pathname manipulation within CAIS, knowing that these interfaces are most
frequently used by tools important to transport.

One possible implementation technique for this criterion would be to
study the literature and existing state of tools to determine the most
frequently used facilities. One could examine tools that should be
transportable, such as editors, source analyzers, target simulators, mail
tools, and possibly cross compilers. The study would list, according to
frequency, all system interfaces used by these tools. Next, each interface
used by existing tools would be mapped to a corresponding functionality and
interface(s) in CAIS-A. This may not be a trivial process. Although we
expect that there are corresponding interfaces in CAIS-A for all or nearly all
the interfaces used by existing tools, there may be a hierarchy of CAIS-A
facilities needed to support that functionality. For example, CAIS-A typing,
access control mechanisms, and CAIS constants would all be needed for nearly
any functionality. Nonetheless, this process would result in a ranked listing
of the facilities in CAIS-A most needed for transportability.

SEVWG, in considering this criterion, has discussed the likely
interfaces that would appear in such a ranking. We suspect that many of the
functions that would appear high in the priority listing would be input and
output facilities. In particular, CAIS-A does not explicitly support windowing
or graphical interfaces. The reason for this is that this area is changing
dramatically. In the design process of CAIS-A, several potential interfaces
were discussed such as X-Windows, QuickDraw, PHIGS, GKS, etc. It was felt
that developing a binding for one (or more) of these systems for inclusion in
CAIS-A would at this time negatively affect the potential success of the
interfaces as a whole. Because of this decision, we expect that a whole class
of input/output functions, deemed critical to transportability, do not even
exist in CAIS-A. SEVWG feels that CIVC-A would be most effectively developed
if it were to place all input/output interfaces at a low priority given the
quickly changing technology in this area.

5.4 Facilities in CAIS-A Common to Other Tool Interfaces

AJPO is currently pursuing CAIS-A implementations, supporting tool
development and related efforts, such as developing a validation mechanism.
CAIS-A facilities refine and enhance CAIS adding important functionality.
Yet, the composition of CAIS-A includes substantial functionality that is
basic not only to CAIS, but also to tool support interfaces in general, such
as process management, aspects of access control and path name manipulation.
Validation tests developed for this basic set of functionality having more
stable and better refined semantics and implementation paradigms. Refined
functionality has higher potential for evolution and continued impact on tool
transportability. SEVWG recommends that one criterion for selecting tests for
CAIS-A be the extent to which the functionality being tested is common to
general tool support interfaces.

D-11

5.5 A Random Sampling Across Facilities

Studies in testing have shown that a random approach to test selection
is beneficial in certain situations [DURAN-84]. Where there is a limited
ability to adequately cover the entire range of functionality, a random
approach to selecting tests performs well.

There are areas of CAIS-A for which sufficient resources will not exist
to allow full development of tests. A randomly selected set of tests should
be developed to provide assessment in such areas. The only requirement
necessary to apply this technique is the ability to enumerate potential tests.
The SofTech taxonomy for CIVC (as modified for CAIS-A) should provide a basis
for this enumeration since it lists all actions on entities that should be
tested in validation.

An enhancement to this approach would be to predetermine the portion of
tests to be developed in classes of tests in a CAIS-A area. For example, one
may decide that the tests in access control be evenly distributed among the
test types, exception processing, normal processing and static processing. An
enumeration of the potential access control tests in each of these classes
would allow a more finely tuned random selection process. SEVWG recommends
that the CIVC-A contract investigate the cost of selecting a portion of the
CIVC-A tests at random.

5.6 Facilities That Achieve Broadest Coverage

Another criterion might be to select tests whose execution involves
interfaces minimally used by the validation suite. Execution of a single
validation test program requires the use of several CAIS interfaces. Most
test programs establish an initial context (input condition) by invoking other
CAIS interfaces. They then perform some action against that context and
complete by calling other CAIS interfaces to determine whether the proper
effect is achieved (output condition.) In light of this, the best measure for
broadest coverage of CAIS interfaces used is not determined by the test
objectives for which test programs are developed. Instead, one must consider
all the CAIS interfaces that are used by a test program for a scenario.

One way to do this is to develop several test objectives and scenarios.
For each scenario, determine the interfaces needed to execute the scenario,
and those other scenarios having common or overlapping input conditions.
Assuming that a predetermined number of test programs could be developed, one
could determine which test programs to develop in the following manner.
Iteratively pick the scenario requiring the maximum number of unused
interfaces. Develop a test program for that scenario and all others having an
overlapping input condition. From this selection technique, a database could
be developed revealing information such as relative importance of each test
program, with respect to diversity of interfaces used, and traceability to
other scenarios and test programs.

The important situation that makes this issue relevant to CIVC-A is that
there are insufficient resources to construct a complete set of tests for
CAIS-A. With the limited resources, this approach shows how to select the
tests that produce a suite that best covers aspects of an implementation.

D-12

6.0 REVIEW BOARD AND FAST REACTION TEAM

Several issues have been raised by the SEVWG aimed at producing the
highest quality test suite possible given the seemingly impossible constraint
that there are currently no reasonable CAIS (-A) implementations on which to
test the test suite. The current state of the implementations most likely to
be used for testing the CIVC indicates that a significant amount of effort
would be required in order to allow them to execute their test programs on a
diversity of CAIS implementations. Seemingly, the problem will worsen with
CAIS-A, as it has recently completed the standardization process and the
complexity of the interfaces will surely require more time to develop solid
implementations than for CAIS.

The SEVWG supports the creation of a specific review activity to
evaluate the completeness, accuracy, applicability and evolution of the CAIS
and CAIS-A test suites. The activity would include a review board, most likely
consisting of members of the SofTech CIVC development team, E&V Team and SEVWG
team members, CAIS-A design team members and possibly some members of the
Government Review Team for the CAIS-A design. Among other responsibilities
the activity and board would serve as the focal point for:

1. Reviewing and monitoring the test suite development process
including:

a. Determining whether the test objectives developed by SofTech
were correct with respect to the standard and whether they
fairly represented the test selection mechanism(s),

b. Reviewing the scenarios to determine their accuracy with
respect to the test objectives,

C. Review the mappings from scenarios to test programs for
appropriateness, and

d. Determine whether the test programs themselves accurately
reflect the scenarios.

e. Review for appropriateness and accuracy all documentation
developed for the CIVC-A.

2. Serve as a fast reaction team regarding the use and interpretation
of tests in the suite.

3. Monitor and promote evolution of the suite. In particular,
recommend and encourage areas where transportability would best be
served by additional suite expansion, or where uses of CIVC-A and
CAIS-A could best serve the interests of transportability.

4. Serve as the focus for the process by which the test suite is
applied to CAIS implementations.

This activity would serve as the technical sounding board for the
development of CIVC-A, in much the same manner as CIVCWG does for the
development of CIVC. Further, it would provide the framework for both CAIS and
CAISiA that allows a new test to be introduced in a controlled way. This
ongoing effort will also require an organization to review new test
recommendations and to make decisions regarding any additions.

D-13

7.0 CAIS-A EVALUATION CAPABILITY

The Ada community has recognized the need to gather data on compilation
systems. The information is useful when a project must select compilers and
associated tools. In part, the need has been fed by existing compilers
available on a multitude of host environments. A project intending to use a
specific host frequently has several choices of Ada compilers for the host
configuration. In addition to the plethora of compilers, we are seeing that
compilation systems vary widely in their support of various Ada features; most
often tasking, exceptions, and machine dependencies. As a step toward meeting
this need, the E&V Task has sponsored the development of the ACEC (Ada
Compiler Evaluation Capability) which is a suite of performance tests for Ada
compilation systems.

SEVWG anticipates the same need for implementations of CAIS-A. For
example, we expect to see wide differences in the performance characteristics
of CAIS-A implementations. In particular, differences will most likely occur
in basic node manipulation, as well as in distribution, support for
transactions, type manipulation, type checking and attribute monitors.
Collecting CAIS-A performance information, for example, is one aspect useful
in evaluating a CAIS-A implementation for use on a project’s support
environment. Further, we expect wide variation among CAIS-A implementations
on other quality factors ranging from supporting documentation to maturity and
reliability. SEVWG’'s recommendations on CAIS-A evaluation recognize the need
for a comprehensive approach to assessing the quality and suitability of
CAIS-A implementations.

Although there are similarities with compiler evaluation, we do not
anticipate many projects will be confronted with the problem of which CAIS
implementation to select for a particular host. Because of the expense
involved in developing a CAIS implementation and its tight binding with the
host, there will be fewer implementations of CAIS for a host than there are
implementations of Ada compilers for a single host. Further, time and space
are typically less critical in a support environment than they are in an
embedded application. These factors indicate that evaluating CAIS
implementations will be different than evaluating compilers. For instance,
since comparisons might be necessary across hardware, we see the need for
measures of CAIS performance that are useful independent of hardware speeds.
Two possible approaches are:

1. Normalization of wall clock results,

2. Adopting a priori measures by defining elementary CAIS operations
and measuring performance in terms of these elementary operations.
These operations might be actions such as checking access rights
to a node, stepping a single relationship, etc.

7.1 Performance Tests
SEVWG has discussed various measures that should be obtained when
collecting performance information about a CAIS implementation. These reflect

CAIS characteristics apart from the tools residing on top of CAIS. The list
is given as representative rather than exhaustive and includes:

D-14

1. traversing a path,

2. spawning a new process (creating a job,)
3. striking new relationships or creating/changing attribute values,
4. defining a given type and view definition structure,
5. referencing the type structure in "type checking,"
a) for shallow inheritance/view structures,
b) for deep inheritance/view structures,
6. performing mandatory and discretionary access checks,
7. opening nodes,
8. canceling a transaction/committing a transaction,
9. observing the performance effects of nested transactions,

10. initiating an attribute monitor,
11. importing and exporting node contents,
12. creating and assigning channels and devices.

Additionally, there are measures examining the space required for CAIS
entities. These might include disk usage, virtual or physical memory usage for
various kinds of nodes, relationships and other entities.

7.2 Alternative Approaches

While we have discussed collecting performance information in the
traditional sense, SEVWG also considered other methods short of a suite of
test programs. A minimal set of tools could be rehosted (rewritten) to take
advantage of CAIS-A. In rehosting to use CAIS-A facilities, the tools could
be instrumented so as to report on the efficiency with which they operate.
Together with these tools one could develop a set of standard scenarios or
scripts that would exercise the underlying CAIS-A implementation in a
predefined fashion. Although the expense of rehosting tools to a CAIS-A
implementation is probably in itself as expensive or more expensive than
developing the performance suite, it has the following added advantages:

1. a usable minimal APSE running on top of CAIS-A would be available
early for transition purposes.

2. the tool set could be used as the basis for CAIS-A design
evaluation and use studies.

No one has yet determined that the CAIS-A will achieve its goal of

increased transportability economically. Using a tool set as a performance
measuring tool would require careful management to assure proper use. Users

D-15

would need to know what portions of an implementation were being reported, and
how gxtens1ve1y those portions were being exercised. Doing so correctly would
require identification of test objectives being exercised by the tool set and
scripts.

Another approach, which also draws considerable debate is the use of
validation tests for performance measurement. The validation tests themselves
could be instrumented with time and space gathering code and used for thé dual
purpose of validation and evaluation. Although this approach has the danger
of doing neither validation nor performance collection correctly, if done
properly it can provide a suite of tests that not only accomplish validation,
but also report on the performance characteristics of an implementation in
certain typical use scenarios. The validation tests themselves follow a
general pattern in which a CAIS context (node structure most commonly) is
constructed. One or more tests are then executed against the context to
achieve some number of expected results. Finally, other CAIS services are
called to determine that the context was modified as called for in the CAIS
specification. The process of building the context could include performance
gathering hooks without changing the validation process. Once again,
management of these dual purpose tests is an important underlying concern.

8.0 CAIS-A EVALUATION AND VALIDATION POLICY

A draft CAIS validation policy has been discussed by the KIT and is
included in the final report of that effort [KIT-88.] KIT recommends a
multilevel validation policy that would be applicable to CAIS-A. Motivation
for such a policy is that CAIS-A will be implemented on such a variety of
machines having sufficiently differing purposes and use requirements that
warrant having differing validation procedures. Adoption of a policy by the
AJPO having multi-level validation requirements has potentially significant
impact on the construction of CIVC-A.

D-17

9.0 AUTOMATICALLY GENERATE TEST CASE CODE

Another approach reducing the cost of generating validation tests for
CAIS-A is to automatically generate the test case code from scenarios.
SofTech, in producing CIVC, has adopted a three step process for generating
test cases for taxonomy entries. First, Test Objectives are generated from
the taxonomy. The Test Objectives describe actions that are to be validated at
the level of CAIS entities and actions on those entities, for example, create
a secondary relationship. Next, Scenarios are generated to accomplish the
Test Objective. Scenarios provide more detail as to how the Test Objective is
to be achieved. A Scenario is made up of an input condition, output condition
and a CAIS service to be called. That is, the test is to set up the input
condition, which is generally a node structure that must be created using some
CAIS services, then call the CAIS service, and finally, determine that the
output condition has been satisfied.

Often, more than one Scenario is needed to satisfy a Test Objective.
The last step in generating the validation test case is to combine and code
the Scenarios. Scenarios are combined with others having compatible input
conditions to avoid the overhead or reestablishing the same context in several
Test Cases. Coding is done using CAIS service calls as determined by the
Scenarios.

SEVWG believes that by adopting a somewhat modified and more precise
form for expressing Scenarios, that code can be automatically produced. This
can be done in a manner that requires more time to generate scenarios from the
Test Objectives, but that saves substantial labor in generating test cases
themselves. SEVWG recommends that the CIVC-A contractor study the potential
for adopting this modified approach. We see that three fundamental steps must
be taken to shift to this approach.

9.1 Develop a Scenario Description Language

A new form must be developed for describing Scenarios. The form would
be a cross between the current graphical notation and a well defined language
having predefined syntax and semantics. Although a graphical representation
could be used, we suggest that a notation similar to the Common External Form
(1ists) be adopted. This Scenario Language must be capable of being easily
translated into Ada code, and more specifically, sequences of calls to CAIS
interfaces. The language would retain many of the characteristics that
SofTech is currently using to express Scenarios; namely, variables to name
relations, relationships, nodes and attributes. The ability to express don’t
care situations in the language is critical to matching one scenario’s
precondition with those of other scenarios. The language would adopt a
technique for expressing node structure specifying the types of nodes and the
relations emanating from nodes. One manner to express such structures would
be a predicate calculus employing existential and universal quantification.
For example, to express that the scenario requires a structural node having an
emanating secondary relationship (whose relation and key are unimportant) with
the attributes al, a2 and a3 the following predicate may be used: there exists
a node n and relationship r such that n is structural and r is secondary and
r has attributes al, a2 and a3. In this particular case, it doesn’t matter
where the node n is located, so long as it is accessible. The language would

D-18

also support naming and use of common descriptions in other descriptions. For
example, the description given above may be named "having relationship
attributes al, a2 and a3." The language would allow for this naming and
subsequent uses of the name would refer to the predicate. A translator (9.3
below) would be capable of translating the language statements, which would
probably be expressed in general list format, into CAIS-A interface calls that
generate the structure.

9.2 Scenario Dependency Analysis

The second step in adopting this approach would be to devise a mechanism
capable of performing the dependency analysis that SofTech is currently doing
manually. This analysis determines which Scenarios have compatible
preconditions, and may thus be combined into the same test case. While this
analysis minimizes the number of distinct node contexts that the validation
suite must create, it does take considerable time to develop. We expect that
nearly as good of a job can be done automatically using the Scenario Language.
This involves matching the precondition specifications in separate Scenario
Descriptions to determine commonality or matching don’t care situations.
While this tool would be a useful addition to this approach it is not critical
to adopting the approach. In particular either the current manual approach
could be used with the Scenario Language Descriptions or, at the expense of
execution efficiency of the resulting validation suite, no minimization need
be performed.

9.3 Translator from Scenario Descriptions to Ada

Finally, a translator must be constructed, as referenced in item 9.1,
that converts Scenarios in the definition technique into test case code. This
translator would use common compiler construction techniques to analyze a
language far simpler than a general purpose programming language. We suspect
that translation templates would be recorded for use by the translator. When
the translator recognized a node structure component matching one of its
templates it would simple emit the code needed to build that component. A
majority of the overhead for developing the translator could be included in
the syntactic description of the Scenario Language. Using a compiler-compiler
tool such as YACC and LEX would greatly ease this effort. Although the
resulting translator may not be optimized to run efficiently, its performance
characteristics (aside from correct functionality) are irrelevant.

D-19

10.0 DEVELOP A NEW TAXONOMY FOR CIVC-A

To reduce the CAIS specification to a more manageable form, SofTech
developed a taxonomy in which CAIS entities, such as nodes, attributes,
relationships, processes, devices, etc. exist together with the actions that
CAIS provides for those entities. The actions generally involve defining,
accessing and removing CAIS entities. Entries in the SofTech taxonomy are
CAIS entities representing the actions that may be taken on those entities.
Thus the taxonomy can be taken as a requirement for the CIVC, in that, the
validation mechanism must determine that the action can be made (as described
in the specification) on the entity represented.

The taxonomy is used to populate test objectives in a given topical
area. Test objectives are generated directly from the specification using the
taxonomy as a checklist in a given area. While SEVWG sees the benefit and need
for CIVC to adopt this approach, we also believe that it would be beneficial
to have tests traceable to the specification itself. In the case of CIVC, the
taxonomy provides a dense representation for the specification. Although the
specification details how one creates an access relationship for example, the
SofTech taxonomy abbreviates the specification by telling what actions are
possible on access relationships, rather than detailing which interfaces
build, reference or delete access relationships.

SEVWG discussions on the taxonomy indicate that the current approach
needs modification to accommodate CAIS-A, and that the taxonomy can be more
directly related to the specification. For example, with the introduction of
typing within CAIS-A comes the potential to create entities and act on them,
in a 1imited manner, which cannot be registered in the SofTech taxonomy.
Using CAIS-A typing it is possible to create node types, for example, that are
not one of those standardly defined in CAIS-A. The operations and this
capability might be missed by the validation suite for CAIS-A if, strictly
speaking, the same taxonomy approach is used for CAIS-A.

In a CAIS-A Appendix, the standard predefines a definition structure (a
set of node, relation and attribute type definitions) for CAIS-A. While it is
expected that users will enhance this definition structure, it provides the
basis for elementary operations needed. This set of predefined definitions
would make a better basis for the taxonomy than the current table approach.
The primary benefit of doing so would be that the validation suite would be
directly based upon the specification rather than an interpretation of the
specification. This would allow test objectives to be derived directly from
nodes in the predefined definition structure. SEVWG recommends that CIVC-A
initially investigate the suitability of using this approach. In particular,
there are questions which must be resolved if this approach is to be adopted.
Will it work for all Test Objectives; what is not in the predefined structure
that must be evaluated? SEVWG has identified exceptions and static semantics
as example components that must be validated, but which do not appear in the
predefined structure. Are there other examples?

D-20

Another question that must be answered is: What is the suitability of
this approach to coverage analysis? One of the main benefits of the taxonomy
developed by SofTech for CIVC is that coverage analysis of the taxonomy is
quite straightforward. One can easily analyze the table entries in the
taxonomy which have been developed into test programs. The same analysis may
be available when basing test objectives on the predefined type structure in
CAIS-A. Although the questions of completeness of the structure complicate
coverage analysis, having a taxonomy based on the specification and also
having coverage analysis are the two main benefits of this approach.

D-21

11.0 MAINTENANCE OF THE CIVC-A TEST SUITE

The CIVC consists of two software products, the Test Administrator and
the Test Suite. Further, substantial electronic documentation, called the
Framework, exists supporting the validation suite. With the exception of the
Test Suite itself, the other electronic products do not have the strict
requirement that they be CAIS conforming tools or data. That is, for example
numerous CIVC data exist on special purpose software currently available on
the Macintosh. This presents an issue regarding the long term maintenance of
this information. While it would be desirable, from the standpoint of
evolution of CIVC-A, to have all software and electronic data hosted on
CAIS-A, current implementations of CAIS-A prohibit development of this
information. Thus the issue that needs to be resolved is: How can we have a
CIVC-A that will in time be maintainable on a CAIS-A environment that can be
developed in the short term?

While this question is currently unanswerable, various approaches to its
solution need to be identified and pursued. SEVWG recommends that the CIVC-A
contractor, early in the development of CIVC-A, study and report on the
feasibility of developing a minimal CAIS-A tool that allows Framework
documentation to reside on a CAIS-A environment.

The Framework is one of the most distinguishing products of the CIVC.
It provides users with a friendly user interface to the collection of
documentation pertaining to the CIVC. The framework allows a user to navigate
among the taxonomy, test objectives and scenarios. The framework, which is a
collection of graphical and textual information, provides the relationships
between different forms of the tests within CIVC.

The framework currently resides on the hypertext mechanisms available
with the guide product on the Macintosh. SEVWG sees the significance of the
framework and its user interface for the purpose of maintenance of the CIVC
product. At least as important, however, is the proliferation of CAIS-A
hosted tools. SEVWG believes that whenever possible CAIS related contracts
should create tools that contribute to a CAIS based APSE. Further,
maintenance accounts for such a significant portion of the cost of a system.
This will surely be the situation with CIVC-A. SEVWG recommends that the
CIVC-A contractor conduct a feasibility study on the possibility of
implementing a tool on top: of a CAIS-A implementation that could be used to
host a version of CIVC-A’s framework product. Even though the tool
development to host such a product could be quite extensive, we believe that a
tool possessing reasonable functionality could be constructed in a manner
beneficial to the CIVC-A program and equally beneficial to the CAIS. Further,
subtle but important improvements could be made over the Macintosh version of
Framework currently used on CIVC. The first improvement is that the Framework
could be made to easily reference the actual source code of the CIVC-A suite.
This would provide a Framework in which all aspects of the test suite and its
traceability back to the CAIS-A specification could reside. The second
improvement would be to allow the Framework to be loaded in an automatic
fashion. Currently, SofTech is providing the links between the components of
the Framework in a manual fashion. This process makes it difficult to assure
completeness, correctness and consistency of the relationships between test
objectives, scenarios, the specification and the taxonomy. If a tool were
constructed on top of CAIS-A, it could provide the capabiltiy for automatic
loading of the links among objects.

D-22

12.0 SUMMARY RECOMMENDATIONS

In this section, we present in summary form the issues presented in this
document. These are presented in the following format. This issue itself is
briefly explained. SEVWG recommendation for resolving the issue is next
given. This most often is done by identifying a specific product that will
aid in deciding on the issue. Any dependencies with other issues and the
appropriate activity for developing the product are also identified.

1. Size and Cost, reference discussion in Section 4. SEVWG
recommends an initial study by the CIVC-A contractor to estimate,
in more precise terms than SEVWG, the impact to the validation
suite that the move to CAIS-A will have. We recommend that the
study should include:

a. Suitability of existing CIVC test objectives to CAIS-A.

b. Impact of new topical areas introduced in CAIS-A (typing,
transactions, attribute monitors, distribution, access
control, Input/Output and basic node model changes)
estimate:

c. The number of new test objectives that must be developed for
functionality in CAIS-A that currently exists in CAIS-1838.
The purpose of this study is to provide the information
needed to determinedirections that CIVC-A should take. The
information will provide the basis for obtaining funding for
CIVC-A. Further, it will provide the basis for technical
direction on the development of the suite.

d. The CIVC-A contractor should generate a summary report on
the development of CIVC. The report would estimate or
summarize information on the level of effort and machine
resources needed to populate CIVC with tests. The report
should include:

] the number of scenarios generated per test objective
in CIVC
0 the number of scenarios tested in a test class and the

mean number of scenarios that were able to be combined
through dependency analysis.

(] effort required to identify, develop, coordinate
(register in framework), and review
a. test objectives
b. scenarios
c. Ada code in test cases

2. Test Selection Criteria, reference Section 5. The CIVC-A
contractor should develop a plan for the test selection criteria
to be used in developing CAIS-A test objectives. The plan should
be based on those criteria identified in Section 5 or argue

D-23

alternative methods. There exist many practical approaches to
selecting tests that combine two or more of the several criteria
listed in section 5. SEVWG suggests that those used to develop
CIVC-A be reviewed by CIVCWG at the onset of the CIVC-A activity,
and that portions of the total number of test objectives developed
be derived from selected criteria.

CIVC and CIVC-A Review Board, reference Section 6. To aid in the
use and maintenance of CIVC(-A) and to assure consistent and
reliable results from its use, SEVWG recommends the creation of a
CIVC review board. The board would be formed by AJPO and the E&V
Task to perform activities as described in Section 6.

Automatically Generate Test Case Code, reference Section 9. SEVWG
believes that by adopting a somewhat modified and more precise
form for expressing scenarios, that code can be automatically
produced. This can be done in a manner that requires more time to
generate scenarios from the test objectives, but that saves
substantial labor in generating test cases themselves. SEVWG
recommends that the CIVC-A contractor study the potential for
adopting this modified approach. We suggest that the three steps
outlined in Section 9 be examined by the CIVC-A contractor with
respect to feasibility and effort required to shift to this
approach.

A New Taxonomy for CIVC-A, reference Section 10. SEVWG recommends
that the CIVC-A contractor investigate alternative methods for
representing CIVC-A test requirements. One method to achieve this
might be to use the Appendix of CAIS-A which predefines types for
the standard. Another might be to develop an index system
allowing requirements existing in the standard to be individually
named and referenced for completeness coverage.

Framework, reference Section 11. SEVWG recommends that the CIVC-A

contractor, early in the development of CIVC-A, study and report
on alternatives for hosting the CIVC-A framework.

D-24

APPENDIX A -

ACVC
AJPO
APSE

CAIS

CAIS-A
CAIS-1838

CIVC
CIVC-A

E&V Team
1/0

KAPSE
KIT/KITIA
REQWG
SEVWG

ACRONYMS

Ada Compiler Validation Capability
Ada Joint Program Office
Ada Programming Support Environment

Comnon APSE Interface Set (used generically to
refer to characteristics shared by both
references CAIS and CAIS-1838 below.)

Common APSE Interface Set Revision A
(See reference [CAIS-88].)

Common APSE Interface Set
(See reference [CAIS-86].)

CAIS-1838 Implementation Validation Capability

CAIS-A Implementation Validation Capability

Evaluation and Validation Team
Input and/or Output
Kernel APSE
KAPSE Interface Team (Government) /
KAPSE Interface Team from Industry and Academia
Requirements Working Group of the E&V Team

Standards Evaluation and Validation Working Group

D-25

APPENDIX

Dr.
Ms.
Mr.
Mr.
Mr.
Mr.
Mr.
Mr.
Mr.
Mr.

B - SEVWG MEMBERSHIP

Tim Lindquist, Arizona State University - Chairman
Karyl Adams, c¢j kemp systems inc.

Lynn Chilson, SofTech Houston

Jeff Facemire, SPC (formerly SofTech Houston)

Jack Foidl, TRW San Deigo

Kurt Gutzmann, SofTech Houston

Kevin Hackett, SofTech San Diego

John McBride, SofTech Houston

Gary McKee, McKee Consulting

Lloyd Stiles, US Navy FCDSSA

D-26

APPENDIX C - REFERENCES

[CAIS-88] MIL-STD-1838A Military Standard Common Ada Programming
Support Environment (APSE) Interface Set (CAIS) (Revision A) Vol’s I thru III.
April 6, 1989.

[ADA-83] ANSI/MIL-STD-1815A Reference Manual for the Ada Programming
Language, February 17, 1983.

[CAIS-86] DOD-STD-1838 Common Ada Programming Support Environment
(APSE) Interface Set (CAIS). October 6, 1986.

[RAC-85] DOD Requirements and Design Criteria for the Common APSE
Interface Set (CAIS), KIT/KITIA, October 1986.

[MUN-88] Munck, et.al, An Overview of DOD-STD-1838A (proposed), The
Common APSE Interface Set, Revision A. Proc. ACM Practical Development
Environments, November 1988.

[SEV-85] Component Validation Procedures (CVP) Document, E&V Team
(SEVWG), December 1985.

[SEV-87] Issues and Strategies for Evaluation and Validation of CAIS
Implementations, Based on DOD-STD-1838, E&V Team (SEVWG) 1987.

[KOP-85] The Proposed CAIS Validation Policy Document, as presented to
the E&V Team by Maj. Al Kopp 1985.

[REQ-87] Requirements for the Evaluation and Validation of Ada
Programming Support Environments, E&V Team (REQWG) 1987.

[KIT-88] Final Report of the KAPSE Interface Team (KIT), KIT, 15
October 1988.

[IAS-87] 1Issues and Strategies for the Evaluation and Validation of
CAIS DOD-STD-1838 Implementations Version 1.0, APSE E&V Team, 1987.

[DURAN-84] An Evaluation of Random Testing, IEEE Transactions on
Software Engineering, SE-10, 4, July 1984.

D-27

APPENDIX E

REPORT
of

INDEPENDENT VALIDATION AND VERIFICATION

Ada Compiler Evaluation Capability

Prepared by: Mike Burlakoff
Rt 2, Box 324
Springfield, Mo 65802

Title: Consultant, Computer Scientist
Contract: F33615-88-C-1706

Task: 89-4-5

Air Force Technical Monitor: Raymond Szymanski, WRDC/AAAF-3
Date of Report: 22 January 1990

E-1

ACKNOWLEDGEMENTS

I wish to first express my appreciation to Mr. Ray Szymanski who was
responsible for my being assigned to this task. His technical guidance and
direction added to the results of this project.

I also wish to thank the members of the Dayton Office of The Analytic
Sciences Corporation (TASC). In particular, Mr. Larry Qualls and Mr. Michael
LaFollette were helpful in providing the necessary administrative support
throughout the period.

Appreciation is also extended to the members of the Evaluation &
Validation (E&V) Ada Compiler Evaluation Capability Working Group (ACECWG) for
their time and helpful recommendations and suggestions in the development of
the Keyword Index. The following members were especially helpful in this
effort: Nelson Weiderman (ACECWG Chairman), Dan Eiler, and Greg Gicca.

£-2

ABSTRACT

The activities of this project consisted of three separate (but related)
efforts: 1) Review of the ACEC test suite for the purpose of developing a
Keyword Index, 2) Performance of an Independent Validation and Verification of
the Ada Compiler Evaluation Capability (ACEC) and 3) Technical reviews of
several ongoing E&V and ACEC efforts. An overview of the first two areas is
given below:

The ACEC is a suite of approximately 1,074 tests designed to evaluate
the performance of Ada compilation systems. At present the suite of tests is
not formally organized by test category. It was determined that an index
which gives the primary, secondary and incidental purposes of the tests would
be useful in later namings and/or categorization of tests. To complete this
requirement, the test suite was reviewed and the tests were indexed according
to a taxonomy which listed primary, secondary and incidental purposes.

The ACEC test suite and support software Version 1 was delivered to the
Air Force by the Boeing Company ACEC contractor in the Summer of 1988. In
response to user and Air Force requirements, a follow-on Version 2 of the
system was under development. The Air Force determined that it would be
desirable to perform an Independent Validation and Verification (IV&V) of this
delivery. My task was to accomplish this IV&V. The emphasis was to evaluate
requirements and design documentation and to perform and verify formal testing
prior to system delivery.

E-3

I. INTRODUCTION

In 1975 the Department of Defense (DoD) High Order Language Working
Group was formed with the goal of establishing a single high order language
for use in DoD systems (in particular, in Embedded Computer Systems).
Following establishment of technical requirements and international
competition, the Ada language as currently defined in (1) was selected. One
of the major goals of Ada is to reduce the rapidly increasing costs of
software development and maintenance in military systems.

Early in the development process it was realized that the acceptance and
benefits derived from a common 1anguage could be increased substantially by
the development of an integrated system of software development and
maintenance tools. The requirements for such an Ada Programming Support
Environment (APSE) were stated in the STONEMAN (2) document. STONEMAN
identifies the APSE as support for "the development and maintenance of Ada
application software throughout its life cycle." (2)

In June 1983 the Ada Joint Program Office (AJPO) proposed the formation
of the E&V Task and a tri-service APSE E&V Team, with the Air Force designated
as the lead service. In October 1983 the Air Force officially accepted
responsibility as the lead service for the E&V Task.

The purpose of the E&V Task is to provide a focal point for addressing
the need to provide the capability to assess APSEs and their components and to
determine their conformance to applicable standards, such as the Ada Language
Standard (1). This will be accomplished by (1) identifying and defining
specific technology requirements, (2) developing selected elements of the
required technology, (3) encouraging others to develop some elements, and (4)
collecting information describing existing elements. This information will be
made available to DoD components, other government agencies, industry and
academia (3).

The Ada Compiler Evaluation Capability (ACEC) is one of the technology
initiatives of the E&V effort. The E&V team proposed the initial ACEC concept
and has made valuable contributions in the guidance and direction of this
technology. The Boeing Military Airplanes (BMA) Software and Languages
Organization is the contractor responsible for the ACEC work. For a technical
discussion of the ACEC from a user’s perspective, refer to the documents
referenced in (4) and (5).

This report summarizes the Keyword Index work in Section II and the IV&V
activity in Section III. In addition to these efforts, a number of technical
reviews relating to E&V and ACEC activities were accomplished. The results of
these were usually written comments to the Air Force, E&V Team and/or the ACEC
contractor.

A copy of the Keyword Index, significant IV&V comments/recommendations
and other technical review results are included as attachments to this report.
Appendix I gives a list of these attachments.

During the period of this effort, attendance at the quarterly E&V team
meetings was required and was accomplished.

E-4

II. ACEC KEYWORD INDEX ACTIVITIES:
Following are the procedures that were used to develop the Index:

1. One of the more difficult tasks was to determine the methods and
techniques for developing the Index. As an aid in making those decisions,
informal technical papers from Boeing, the Air Force and members of the E&V
team, as well as prior technical discussions were used. The decision was made
to use a taxonomy approach which would index each test according to primary
purpose in the form:

main_category.lower_level_category.lower_level...

2. An initial review of the Ada Language Reference Manual (LRM)
(specifically ANSI/MIL-STD-1815A, see reference 1) was accomplished. The
purpose was to index all LRM language features which (in the opinion of the
investigator) should be tested by a performance test. Thus, the LRM was the
basis for the initial Keyword Index taxonomy.

3. . The entire suite of tests was then reviewed. Each test was
assigned a unique Index which represented the primary purpose of the test.
Some of the indexes were already listed from the LRM review. Many other
indexes were added during the review. A LRM reference paragraph was also
assigned to reflect the primary purpose of the test by LRM paragraph. The
Keyword Index consists of three parts: Taxonomy Keyword, Test Name, and LRM
Reference.

4. The completed Keyword Index resulted in a large amount of textual
information. To aid in the presentation of the information, a set of support
software was developed. This software enabled the presentation in three
different orders and forms as follows: By 1) Keyword Index (with Test Name
and LRM Reference), 2) Test Name (with LRM Reference and Keyword) and 3) LRM
Reference (with Test Name and Keyword).

At the September 1989 quarterly E&V meeting, the Ada Compiler
Evaluation Capability Working Group (ACECWG) reviewed the above Keyword Index
and made several recommendations and suggestions. The most significant of
these was that the Index should contain Secondary and Incidental purposes of
the tests (if any). This recommendation was approved and a re-review of the
test suite was accomplished and a new version of the Index was completed and
delivered to the contractor, Air Force and members of the ACECWG. Another
review of the Index was made by the ACECWG at the Dec. 89 quarterly E&V
meeting. Several minor changes were recommended and implemented. A Dec. 89
version has been completed and delivered (6). It should be noted that the
comments and recommendations of the ACECWG have been helpful and will result
in a better final technical product.

E-5

ITI. ADA COMPILER EVALUATION CAPABILITY (ACEC) IV&V ACTIVITIES:

The initial phase of the Ada Compiler Evaluation Capability (ACEC) test
suite and support software was delivered to the Air Force by the Boeing
Company ACEC contractor in Summer 1988. In response to Air Force and user
requirements, a Version 2 of the system is being developed. The Air Force
determined that it would be desirable to perform an Independent Validation and
Verification (IV&V) of this version.

The ACEC Version 2.0 development consists of additional performance
tests and assessors for the following Ada Compilation support areas:
Diagnostics, Debugger and Program Library System. In addition, a ACEC Single
System Analysis capability is being developed.

The IV&V consisted of review and evaluation of the ACEC Version 2.0
requirements and design documentation, attendance at appropriate design
reviews and performance and observation of formal testing prior to Air Force
contractual delivery.

The Boeing Company developed a number of working papers, outlining
the proposed approach and design of the above systems. These were reviewed
and comments were given to the Air Force and Boeing. The requirements,
design, and testing documentation was also reviewed and written comments were
delivered. The Preliminary and Critical Design reviews were attended. Prior
to each of these, documentation was reviewed and appropriate technical
discussion was given at the reviews.

Three separate visits were made to the Boeing Co. for the purpose of
performing testing and observation of contractor testing. Following is a
summary of that activity:

The completed set of new performance tests were compiled and executed.
A sample of the Debugger Assessor scenarios were executed. The documentation
describing the Debugger Assessor was reviewed as well as the template for
recording testing results. A majority of the Library Assessor scenarios were
executed and evaluated. The Library Assessor documentation and results
templates were evaluated. A sample of the Diagnostics Assessor and associated
user documentation was likewise executed and evaluated. The Single System
Analysis system was still under development and could not be executed.
However, the documentation was evaluated. In addition to testing and
evaluation by the investigator, observation of a sampling of contractor Formal
Qualification Testing (FQT) was accomplisted.

As a result of this IV&V, both verbal and written comments were given to
the Air Force and Boeing.

E-6

APPENDIX [

Following is a list of attachments to this report.

NUMBER TITLE DATE
1. ACEC Keyword Index 15 DEC 89
2. Keyword Index Update 15 DEC 89
3. Keyword Index Update 25 OCT 89
4. ACEC Recommendations 18 DEC 89
5. IV&V Summary (SEP 28, 29 & OCT 19, 20) 3 NOV 89
6. IV&V Testing at Boeing, OCT 19, 20, 89 25 OCT 89
7. Library Assessor Comments (IV&V at Boeing) 20 OCT 89
8. Single System Analysis Comments
(IV&V at Boeing) 19 OCT 89
9. ACEC IV&V Testing 2 0CT 89
10. ACEC Test Plan/Procedures Comments 13 OCT 89
11. ACEC Support S/W SPS, 5 JUN 89 13 JUN 89
12. Comments to ACEC Operational SW SPS, 5 JUN 89 16 JUN 89
13. ACEC Support S/W SRS Comments 24 APR 89
14. ACEC Single System Analysis Working Paper Cmts 1 APR 89
15. ACEC Database Working Paper Comments 30 MAR 89
16. ACEC Library Robustness Paper Comments 28 MAR 89
17. ACEC Diagnostics Working Paper Comments 21 MAR 89
18. ACEC WP 22 (Symbolic Debugger) Comments 17 MAR 89
19. Topics for ACEC V3 and V4 22 NOV 89
20. An Approach for an Input Data File for Median 15 JUN 89
21. ACECWG/PC Comments 13 MAR 89
22. ACEC/PIWG: An E&V’rs Viewpoint 11 MAR 89
23, CLASSWG - Ref Man Tools Chapter 5 8 MAR 89

E-7

24. PTS Procedures Comments 23 AUG 89
25. Ada Compiler Eval P&G Comments 1 APR 89
26. ACSH Comments 14 JAN 89

£-8

0 U &~ W

REFERENCES

DoD. Ada Programming Language, ANSI/MIL-STD-1815A. 22 JAN 83.

DoD. "Stoneman". Requirements for Ada Programming Support
Environments. FEB 80.

DoD. Evaluation & Validation (E&V) Plan. Version 4.0. 4 JUN 87.
Boeing. ACEC Technical Operating Report. User’s Guide. 10 JUN 88.
Boeing. ACEC Technical Operating Report. Reader’s Guide. 10 JUN 88.
Burlakoff. ACEC Keyword Index. 15 DEC 89.

E-9

ACEC KEYWORD INDEX
(With LRM References and Applicable Tests)

December 15, 1989

Notes: 1) A test in parenthesis means that its sole purpose is for
performance comparison with the preceding test.
2) Test names with no suffix, indicate that the PRIMARY purpose
of this test is this feature. A "/s" means that this is a
SECONDARY purpose while a "/i" indicates that this feature
is INCIDENTALLY used in this test.

access.operations 3.8.2 ss154,ss155,55256,55257,55648,
$s746(ss744..45),s5748,5s805,
ssl6l/s,ss162/s,ss163/s,
ss164/s,ss165/s,55166/s,
$ss167/s,ss739/s

application.avionics 1.1.2 arti_asum,arti_atan2,arti_cos,
arti_fmod,arti_ifpm_ contro]
art1_1fpm_init,arti_ifpm_io,
arti_ifpm_rotors,arti_nairini,
arti_nscni,arti_nutmini,
arti_sin,ew, forward_eulerl,
forward euler?

application.data_encryption_standard 1.1.2 desl,des2,des3,des4,des4a,
des5,des5a,des6,desba,des?,
des7a

application.error_correcting_code 1.1.2 Reed_Solomon_0,Reed_Solomon_l,

Reed_Solomon_2,Reed_Solomon_3,

Reed_Solomon_4

$5398, 55402

Ka]man

$s397,5s401

ss120,ss121,s5122,s5123

s1mu]ate BMBAT

simulate EMRPM,

simulate HMPROTO

simulate KMDUMP,

application.integration
application.kalman_filter
application.lag_filter
application.polynomial.coding_style
application.simulation

et Juh G
e & o s o
Puad Puwed Pt fd Pud
* & & &
RN

simulate_QMPITCH,
simulate_RCWFRDET,
simulate_rmkeying,
simulate_UMNAV
application.symmetric_deadzone 1.1.2 $$399,55403
application.symmetric_limiter 1.1.2 ss400,ss404
array.aggregates 4.3.1 ss775,ss778,ss764/s,s5765/s,
$s766/s,ss767/s,5s768/s
array.dynamic 3.6 ss419(ss420)
array.operations 3.6.2 ss.17,ss.18,ss5.19,s5.57,s5.77,

ss.78,ss.79,s5.80,s5.81,ss301,
$s645,55646,55647,55758,55759,
ss760,s5761,55762,55763,5s774,

E-10

array.constraints
boolean.arrays.packed

<+ W

E-11

(2,0,

$ss776,ss777,ss.53/s,s5.54/s,
ss.55/s,ss.58/s,s5.75/s,
ss.76/s,ss120/s,ss168/s,
ss169/s,ss170/s,ss172/s,
ss173/s,ss174/s,ss175/s,
ss192/s,ss193/s,ss194/s,
$s235/s,5s243/s,55246/s,
ss258/s,ss259/s,5s284/s,
ss285/s,ss309/s,5s388/s,
ss429/s,ss430/s,ss511/s,
ss512/s,ss518/s,ss519/s,
ss520/s,ss553/s,5s554/s,
ss405/1i,ss406/1,5s409/1,
ss410/1,ss411/1i,ss419/1i,
ss420/i,ss428/1,ss432/1,
ss433/i,ss434/1,5s435/1i,
ss436/1i,ss437/1,5s438/1,
ss439/1i,ss442/1,ss443/1,
ss477/1,ss508/1,ss509/1,
ss516/1,ss517/1,ss535/1,
ss536/1i,ss541/1,5s542/1,
ss542x/1,ss545/1,5s557/1
ss562/1,ss596/1,ss597/1,
ss648/1,5s652/1,5s653/1,
ss654/1,ss655/1,s5656/1,
$s657/1,ss658/1,5s659/1,
$s660/1,ss661/1,55662/1,
$s663/1,5s664/1,s5665/1,
$s666/1,ss667/1,5s668/1,
$s669/1,ss670/1,ss671/1,
ss672/1,ss673/i,ss674/1i,
ss675/1,ss676/1,ss677/1,
$s678/1,ss679/1,s5680/1,
$ss681/1,ss687/1,s5688/1,
$s689/1,ss690/1,s5691/1,
$s692/1,5s693/1,55694/1,
$s695/1,55696/1,55697/1,
$s698/1,55699/1,ss700/1,
ss701/1,ss702/i,ss703/1i,
ss704/i,ss705/i,ss706/1,
ss707/1,ss708/1,ss709/1i, -
ss710/i,ss711/1,ss712/1,
ss713/i,ss714/1i,ss715/1i,
ss716/i,ss731/i,ss732/1i,
ss734/i,ss735/i,ss749/1,
$s750/1

$5596(55597),55597
$$337,55338,55339,55340,5s341,
$s342,55343,55344,55345,55347,
$s348,55349,55524,55525,55526,
$s764,5s765,55766,55767,55768,
ss346/1,5s353/1,ss500/1,
$s501/1i,55502/1,55506/1

-

boolean.arrays.unpacked

$$326,55327,5s328,55329,55330,

boolean.expressions

boolean.record

classical _benchmark.ackermann’s
classical_benchmark.cube_placing
classical_benchmark.dining_philosophers

classical_benchmark.dhrystone
classical_benchmark.eight queens
classical_benchmark.GAMM measure
classical_benchmark.numerical.CFA

classical_benchmark.num.knuth_loops

classical_benchmark.num.1livermore_loops 1.

4.5

4.

Pt Pt b Pk

[
.

E-12

b et b
e ¢ o
[P —

5

e o s s
P et ot et

* . . L] - . - . .

N NN NN w

$s331,55332,55333,55334,55336,
$s351,5s352,55346/1,5s353/1,
ss486/i
ss.72,ss101,ss177,5s228,55229,
$s486,55487,55488, 55489,
$s492,55499,ss686y,55686x,
ss.73/s,ss.74/s,ss176/s,
ss227/s,ss230/s,ss231/s,
$s232/s,5s280/s,5s326/s,
$s327/s,5s329/s,ss330/s,
ss331/s,ss332/s,55333/s,
$s334/s,5s335/s,55336/s,
$s337/s,ss338/s,55339/s,
$s340/s,ss341/s,ss342/s,
ss343/s,5s344/s,ss345/s,
$s346/s,ss347/s,5s348/s,
$s349/s,ss350/s,ss351/s,
$s352/s,5s353/s,5s500/s,
ss501/s,ss502/s,
ss145/i,ss146/1,ss147/1,
ss314/i,ss315/1,ss316/1,
ss317/1i,ss318/1,ss323/1,
ss464/i,ss598/1,5s599/1,
$s602/1i,ss604/1,ss805/1
$s682,5s683,5s684,5s685,ss717,
ss718,ss719,ss720
ackerl,acker?2

puzzle
task.7,task.8,task.9,tasklo,
task25

dhryl,dhry2,dhry3

queens

gamm, gamm2
auto,bmt,heapify,lu,runge,
target
loop.0,100p.1,100p.2,100p.3,
loop.4a,1o0p.4b,100p.4c,
loop.5,100p.6,100p.7,100p.8,
1o0p.9,100p10,100pll,100pl2,
loopl3,lo0pl4,lo0pl5,lo0plé,
Toopl7
kernel.l,kernel.2,kernel.3,
kernel.4,kernel.5,kernel .6,
kernel.7,kernel.8,kernel.9,
kernel10,kernelll,kernell2,
kernell3,kernell4, kernell5,
kernell6,kernell6_goto,
kernell7,kernell8,kernell9,
kernel20,kernel2l,kernel22,
kernel23,kernel24

classical_benchmark.prime_number
classical_benchmark.search
classical_benchmark.sort

classical_benchmark.whetstone
conversion.fixed
conversion.float
conversion.integer
conversion.null
conversion.packed to_unpacked

conversion.unchecked_conversion

conversion.unpacked_to_packed
delay

exception.constant.propagation
exception.handling

exception.numeric_error
exception.raise

fixed.operations

float.operations

ot punt
Pt el
- N NN

— e i F- r-3 [7 3
o [+, o0 (3 N ol

3.10.2

O
(=2 =)

E-13

seive

search, ssearch, ssearch2
bsortl,bsort2,ciqsort,igsort,
gsortl,qsort2,shelll,shell2,
mergel,merge2
whetl,whet2,whet3,whetd
ss107,ss108,55466,55467,s5721,
ss722,ss723
$s..2,55..8,s5.13,55289,55290,
$s283/s
ss.12,55233,55234,55300,55468,
$s277/s,ss282/s,5s303/s

ss24l

$5335,55346,5s353
$s259(ss258),5s500,55501,
$s502,s5506

ss350
$s455,55458,55459,delay. 1,
delay.2,delay.3,delay.4,
delay.5,delay.6,delay.7,
delay.8,delay.9,delayl0,
delayll,delayl2,delayl3,
delayl4

$s316,55317,55529
$s379,5s380,5s381,5s382,55383,
$s384,55527,55528, funcexp,
ss543/s,
$s598/1,5s599/1,ss602/1,
$s604/1i,5s638/1,s55741/i
$s313,55369
ssl17,ss311,ss312,5s755/s,
ss757/s
$s109,ss110,5s460,55461,55462,
$5463,55464,55465
ss..l,ss..3,ss..4,ss..5,s55..6,
ss211,ss286,55287,5s288,55302,
$s308,ss315,55324,
$s591(592..4),55592(593..4),
$5593(55594),55594,55643x%
ss.20/s,ss.21/s,8s.22/s,
$s.23/s,ss.24/s,5s.25/s,
ss.59/s,s5.60/s,s5.61/s,
$5.62/s,s5.63/s,85.64/s,
$s.65/s,55.66/s,55.71/5s,
ss134/s,ss135/s,s5136/s,
ss150/s,ss216/s,55219/s,
$s220/s,55256/s,55257/5s,
$s293/s,55294/s,55295/s,
$5296/s,55297/s,55298/s,
$s299/s,5s301/s,s5314/s,
ss316/s,ss5317/s,5s318/s,
$s323/s,55389/s,55390/s,

generics.subprogram

12.

E-14

$s391/s,5s392/s,5s552/s,
ss575/s,ss576/s,ss577/s,
ss578/s,5s579/s,55580/s,
ss581/s,ss582/s,5s583/s,
ss585/s,55588/s,5s589/s,
$s590/s,5s595/s,55606/s,
$s607/s,ss609/s,55643/s,
ss779/s,ss780/s,ss781/s,
$ss782/s,ss783/s,ss784/s,
ss785/s,ss786/s,ss787/s,
$s788/s,ss789/s,ss790/s,
ss791/s,ss792/s,ss793/s,
$s794/s,ss795/s,5s796/s,
$s797/s,ss798/s,
ss.67/i,s5.68/i,s5.69/1,
ss.70/1,ss120/1,ss121/1i,
ssl22/i,ss123/1i,ss141/i,
ssl42/i,ss143/1,
ss154/i,ss155/1,ss210/1,
ss218/1i,s5226/1,5s233/1,
ss234/1i,ss262/1,5s263/1,
$s291/1,5s292/1i,ss304/1,
ss305/1i,ss306/1,ss307/1,
$s397/1,5s398/1,5s399/1i,
ss400/i,ss401/1,ss402/1,
ss403/1i,s5404/1,ss5406/1,
$ss407/i,5s413/i,ss414/1,
ss415/i,ss416/1i,ss417/1,
ss418/i,ss431/1i,ss432/1,
ss433/i,ss434/1,ss435/1,
ss436/1,ss437/1,ss5442/1,
$s443/i,55444/1,55448/1,
$s450/i,ss454/1,ss467/1,
ss485/i,ss511/1,ss512/1i,
ss513/i,ss514/1,ss515/1,
$s529/1,ss530/1,ss531/1,
ss532/1,5s533/1i,ss534/1i,
ss535/1,ss536/1,s5547/1,
ss548/i,5s549/1,ss586/1,
ss621/1,5s622/1i,55623/1,
$s624/1,55625/1,55626/1,
$s627/1,55628/1,55629/1,
$s630/1,ss631/1,55632/1,
ss633/1,ss645/1,55646/1,
ss647/i,55649/1,5s650/1,
ss753/1,ss754/1,ss758/1,
$s759/1,ss760/1,ss761/1,
$s762/1,ss763/1
ss148,ss149(151),ss150,55478,
$s621,55622,55623,55624,55625,
$5626,55627,55628,55629,55630,
$s631 '

integer.int_32.operations 3.5.5 $s270,ss271,ss272,ss273,s5274,
$s275,ss276,ss277,5s278,55280,
$5282,55283,55284,55282/s
ss102,ss199/s,55446/1
ss..7,ss..9,ss.10,ss.11,55.46,
$s201,5s202,55203,55268,55269,
$s281,5s561,55729,55744,55745,
ss.40/s,ss.41/s,s5.42/s,
ss.43/s,ss.44/s,s5.45/s,
ss.47/s,ss.48/s,55.49/s,
ss.50/s,ss.51/s,ss.52/s,
ss.56/s,ss137/s,ss189/s,
ss195/s,ss196/s,s5197/s,
ss198/s,ss217/s,ss221/s,
$s393/s,5s394/s,5s395/s,
$s396/s,ss503/s,55550/s,
ss551/s,5s556/s,55560/s,
$s566/s,55s567/s,5s568/s,
$s569/s,ss570/s,ss571/s,
ss572/s,ss573/s,ss574/s,
ss584/s,5s608/s,ss610/s,
ss611/s,ss753/s,55754/s,
ss.95/i,ss.96/i,ss.97/i,
$s.98/1,ss102/1,s5103/1,
ssll17/i,ss129/1,ss130/1,
ssl131/1,ss138/1,ss139/1,
ss140/i,ss190/1,ss191/1,
$s200/1,ss209/1,ss213/1,
ss214/i,ss241/1,ss264/1i,
$$265/1,5s266/1,ss267/1,
$s268/1,55269/1,s5364/1,
$s366/i,ss367/1,s5369/1,
ss372/1,ss373/1,ss374/1,
$s375/1,5s384/1,5s385x%x/i
$$386/1,55423/1,ss424/1,
$s425/1,5s426/1,ss427/1,
ss428/i,s5429/1,ss430/1,
ss431/1,ss440/i,ss441/1i,
$s445/1,55446/1,ss447/1,
$s449/1,5s451/1,55466/1,
$s468/i,5s469/1,ss470/1,
ss471/i,ss472/i,ss473/1,
ss474/i,ss475/i,ss476/1i,
$s490/i,ss491/1,ss500/1,
ss501/i,ss502/1,5s506/1,
$s507/i,ss511/1i,ss512/1i,
$s558/1,55559/1,55563/1,
$s564/1,5s565/1,ss612/1,
$ss634/i,s5635/i,ss636/1,
$s637/1,ss638/1,5s639/1,
$ss640/1,ss651/1,ss652/1,
ss752/1,ss755/1,ss756/1,

integer.MOD
integer.operations

oo

w W
oo

-

integer.REM

I10.direct
10.sequenctial

10.Text_I0

10.Text_I0.float.string
10.Text I0.integer.string
math.dependent . adx
math.dependent.intexp
math.dependent.setexp
math.function.asin
math. function.atan
math. function.cos

math. function.exp

math. function.1n
math.function.sgn

math.function.sin
math.function.sqrt
optimization.algebraic_simplification

optimization.boolean_var_elim
optimization.bounds_check
optimization.common_sub_expr_elim

optimization.data_flow
optimization.dead

optimization.folding

4.5.5

14.2
14.2

14.3

o
ww
~ OO

O O SO - - - e
e e e s e o e
(3,3 3, 5 a3, WA, N3, N3, R

10.6

10.6
10.6

10.6

E-16

ss757/1,ss774/i,ss775/1,
ss776/1,ss777/i,ss778/i
ss103,ss447/1,ss204/s,
ss276/1,ss362/1,ss363/1,
ss447/i
1011,1012,1013,1014,1015,1016
1017,1018,1019,1020,1021, 1022,
1023
10.0,10.1,10.2,10.3,10.4,10.5,
10.6,10.7,10.8,10.9,1010,
$s537/i,ss538/1,5s539/1i,
ss540/1,55686/1
ss134,ss5135,s5136

ss137,ss431

$s810,ss807/s

$s809,5s806/s

ss811,5s808/s

$s586

$s.34,s5299

$5.28,55295
ss.14,ss.31,55296,ss308/1
$s.32,ss297,ss.14/s,5s308/i
ss.35,55267/1,5s268/1,
$s269/i,ss413/1,ss414/1,
$s562/1i

ss.27,ss294

$5.33,55298
$s.44,s5.47,s5.48,s5.49,s5.50,
ss.51,ss5.61,s5.62,s5.63,55.64,
$s.65,s5.66,s5.67,s5.73,s5.74
ss218,ss220,5s221,ss319,55320,
$s321,5s322,55432(ss433),
$s433,ss434,55435,55436,55437,
$s560(ss561)

ss176(ssl77)
ss174,s5192,55193,55194,55368
ss.75,ss.76,ss172,
ss210(ss211),ss406,s5428,
$5508,5s509,55530,55533, 55553,
ss554,5s643,5ss644, common
$s504,5ss505,55753(ss757),
ss754(ss757),ss755(ss757),
$s756(ss757)
ss.56,s5.68,s55.71,55225,55226,
$s427,5s638,55639,ss640,5s641,
$$642,55649,55650,55651,dead
ss.41,s5.42,55.55,55.60,
$s.70(ss.69),ss185,
$s189(ss190),ss216,ss217,
$s219,s5227,55230,ss231,
$$232,55239,55285,5s303,
$s304,5s5305,s5306,

optimization.inline
optimization.jump_tracing
optimization.loop_flattening
optimization.loop fusion
optimization.loop_induction
optimization.loop_interchange
optimization.loop_invariant

optimization.loop_rotation
optimization.loop_unrolling

optimization.machine_idiom

optimization.merge_tests

optimization.order_of_evaluation

optimization.redundant_code

optimization.register_allocation

optimization.strength_reduction

optimization.test_swapping
optimization.unreachable_code
package.overhead

pragma.interface.language.assembly

b
o
[+,] (<, X)) [W W W W) (<))

10.6
10.6

10.6
10.6

10.6

10.6

10.6

13.9

E-17

ss314(ss315),5s318,55325,
$s362,5s421,ss532,55537,55538,
$$539,55540,55556,
ss558(ss559),ss561x,55563,
ss564,5ss565,5s587(591..4),
$s588(591..4),ss589(591..4),
$s590(591..4),5s595,5s806,
ss807,ss808,fold,ss..2/s,
ss..8/s,ss.54/s,s5.83/s,
ss591/s,ss594/1
$5260,55410(ss411)
ss182,ss183,s5184,5s250,55619,
$s620

ss405

ss180(ss181)

$s236,55237,55409

ss750
ss212,5s222,5s429,5s430,5s536,
ss749,ss752, invar
$s385(ss385x),ss386,55387
$5238,55240,ss541,
$s542(ss542x),ss105/s
ss.40,s5.43,s5.45,55.52,55.59,
$ss173,s5196,ss197,5s5198,55199,
$s200,55204,55205(55206),
$s207,ss208,ss214,ss215,5s323,
$s385x,55407,55408,s5503,
ss555,ss611,idioms,ss..7/s,
$s.29/s,55.30/s,ss115/s
ss175,ss178(ss179),
$s440(ss441)
ss413,s55414,ss415,55416,55417,
ss418,55545,55546,55547,55548,
$5549,55550,55551, 55552
$s195,55261,5s376,5s377,
$5.93/s
$5235,55262,55263,55264, 55265,
$s307,55388,55412,55442,55443,
$s507,ss510,ss511,ss512, 55531,
$ss534,5s557,55606,55607,5s608,
$$609,55610,55612
ss.15,ss5.16,55188,
ss213(ss422),5s279,s5291,
$5423(ss424),5s425,strength,
$s426/s

$s438,55439
$s543,ss751,unreach
$5469,55470,55471,55472,55473,
$s474,5s475,5s476,5s477,ss779,
$s780,ss781,55782,55783,55784,
$s785,55786,55787,5s788

ss747

pragma.pack
pragma.suppress.discriminant_check
pragma.suppress.division_check
pragma.suppress.index_check

pragma.suppress.overflow_check

pragma.suppress.range check

record.aggregates
record.assignment
record.component.assignment

record.discriminants
record.operations
record.overhead
representation.attributes

representation.pack.unpack

scope.intermediate
scope.local
statement.abs

statement.attributes
statement.block.overhead

13.

11.

11.

11.
11.

11.

W W
~N~NW

—

NN N~

B

3.7.1

w w

13.7.2

~~
.« o

13.1

[1. 3 & 00 00

o —

£-18

NN W

P

$s156,ss157,5s158,s5159,
ss160,ss161
$s613,ss614,5s615,55616,55617,
$5618,55242/s
$5444,55445,55446,55447,5s448,
$s449,5s450/s,5s451/s
$5.53,55.54
$s450,5s451,55444/s,55445/s,
$s446/s,55447/s,55448/s,
$s449/s
ss117,ss168,s5169,ss170,ss171,
$5363,55364,55365,55366,55367,
$s372,ss373,5s374,5s375,ss757,
$s242/s,55252/s,55254/s,
$s255/s,55758/s,ss759/s,
$s760/s,ss761/s,ss762/s,
ss763/s

ssll6

ss100,ss114
ss.21,ss115,55244,55156/s,
ss157/s,ss158/s,s5159/s,
ss160/s,ss161/s,s5215/s,
£s724/s,ss725/s,ss736/s,
ss737/s,ss738/s,ss407/1
ss152,55153,55242,55245,55598,
$5599(55598),55600(ss601),
$s601,5ss602,55603,55604,ss605
$ss513,5s514,5s515
$s789,s55790,55791,55792,55793,
$s794,ss795,ss796,55797,55798,
ss730,ss731,ss732,55734,55735,
$s736,ss737,5s738,55739,s5740
$5652,55653,55654,55655, 55656,
$s657,55658,55659,55660,55661,
$5662,55663,55664,55665,55666,
$5667,55668,55669,55670,55671,
$s672,55673,55674,55675,55676,
$s677,5s678,5s679,55680,ss681,
$s687,5s688,55689,55690,s5691,
$5692,55693,55694,55695,55696,
$5697,55698,55699,55700,ss701,
$s702,ss703,ss704,55705,ss706,
$s707,ss708,ss709,ss710,ss711,
ss712,ss713,ss714,55715,5s716,
ss724,ss725

s.96,55.97,55.98

ss.20,55.95
$s.29,55.30,55266,55293,
$s368/s,s5431/i

$s246
$$.22,55.23,55.24,55.25,55544

statement.case

statement.catenation
statement.control.exit

statement.control.for

statement.control.while

statement.exponentiating

statement.goto

statement.hand optimize

5.5

5.5

4.5

5.9

4.4

E-19

ss118,ss119,ss133/s,55325/s,
$s482/i,5s488/1

ssll3

$s354,55355,55356,55357,
$ss182/s,5s183/s,55184/s,
$s250/s,ss376/s,ss377/s,
$s386/s,ss612/s,
ss406/1i,ss427/1
$5.58,55104,5ss105,55181,55422,
ss424,5s516,5s517,5s518,55519,
$s520,55535,55542x,55749,
ss.57/s,ss.80/s,ss.81/s,
ss106/s,ss171/s,ss180/s,
ss225/s,ss236/s,ss237/s,
$s238/s,5s239/s,55240/s,
ss387/s,ss409/s,55423/s,
ss425/s,ss525/s,5s536/s,
ss541/s,ss542/s,ss651/s,
ss749/s,ss750/s,ss752/s,
ss776/s,
ss120/i,ss163/1,ss164/1,
ss165/1,ss166/1,ss167/1,
ss212/i,ss213/1,ss428/1i,
ss431/1,ss438/1,ss5439/1,
ss440/1,ss441/1,ss442/1i,
ss443/1,ss472/1,s5473/1,
ss477/i,ss490/1,ss491/1,
ss511/1,ss512/1i,ss654/1,
$s655/1,55659/1,s55660/1,
ss664/i,5s665/1,55669/1,
ss670/i,ss674/1,ss675/1,
ss679/1i,5s680/1,ss686y/1i
$s686x/1,55689/1,5s690/1
$s694/i,55695/1,55699/1,
ss700/i,ss704/i,ss705/1,
$ss709/i,ss710/i,ss714/1i,
ss715/i,ss741/i
$s209,ss426,

ss185/s,
ss148/i,ss162/i,ss165/1,
$s166/1,5s369/1,5s385/1,
ss479/1i,ss480/1i,ss481/1i,
$s482/1i,5s493
ss191,ss222/s,ss121/s,55188/s,
$s291/s,ss304/s,5s305/s,
$s306/s,5s307/s,s5s595/s,
$ss643x/s
$5.26,55261/s,55385/s,
$s619/s,5s620/s

$s356/1i

$5.69,s5190

-

-

statement.if.coding_style
ss.82,55.83,55.84,55.85,55.86,

statement.if.condition

statement.null

statement.overhead
statement.parentheseis

storage.reclamation

subprogram.external

5.3

6.4

E-20

5.3

ss.87,s5.88,s5.89,s5.90,s5.91,
$5.92,55.94,55186,s5187,55223,
$s224,55490,5s5491,

$5494 (ss495),55495,55496,
$s497,55498(ss499)
$s.93,5s129,s5144,55179,55206,
$s292,ss441,5s559,s55207/s,
$s208/s,ss324/s,5s328/s,
ss421/s,ss438/s,5s5439/s,
$s440/s,5s504/s,5s505/s,
$s507/s,5s508/s,55509/s,
$s510/s,5s558/s,5s561/s,
ss644/s,55649/s,55650/s,
$s686x/s,ss686y/s,ss751/s,
$s800/s,s5s801/s,5s802/s,
$s128/1,ss132/1i,ss144/1,
ssl76/1i,ss177/1,ss178/1,
$s205/1i,ss214/1i,ss227/1i,
$s228/1i,5s229/1,ss230/1,
ss231/i,ss232/i,ss262/1,
$s263/1,s5264/1,ss311/1,
ss312/1,ss313/1,ss319/1,
$s320/1i,ss321/1,ss322/1,
$s339/1i,5s355/1,5s356/1,
ss385x/1,5s398/1,55399/1
ss400/1,ss402/1,ss403/1,
$ss404/i,ss409/1i,ss417/1,
ss418/1,ss431/1,s5479/1,
ss480/i,ss481/i,ss511/1,
ss512/1,5s526/1,ss527/1,
ss528/1i,ss537/1,ss538/1,
$s539/1,5s540/1,ss754/1,
$s806/1i,ss807/i,5s808/1,
$ss809/1,ss810/1i,ss811/i
ss..0,55106,5s804,s5544/s,
ss543/1
$5634,55635,55636,55637
$5389,55390,55391,5s392,55393,
$s394,55395,55396
ss162,s5163,s5164,55165,
$s166,s5167,s5741,
reclaim_heap_con,
reclaim_heap_unc,
reclaim_call_con,
reclaim call _unc
ss.36,s5.37,55.38,55.39,55632,
$ss768(ss769..73),
$s769(ss770..73),
ss770(ss771..73),
ss771(ss772..73),ss772(ss773),

-

subprogram.inline

subprogram.local

subprogram.nested

subprogram. parameters
subprogram.parameters.default
subprogram.parameters.modes

subprogram.parameters.passing

task.interrupt

task.language _feature_tests

6.3.2
6.4

(<)} O OO
W
N —

r-3

13.5.1

E-21

$s773,ss641/s,55642/s,
ss236/1i,ss237/1,ss365/1,
ss385/1,ss386/i,ss387/1,
ss516/1,ss517/i,ss518/1,
ss519/1,5s520/1,ss546/1,
ss547/1i,ss548/1,5s549/1,
$s596/1,55638/1,55639/1,
$ss640/1i,ss730/i
ss142(ss144),ss411,ss633,
$s563/s,55564/s,55565/s
ss127,ss141,ss143,s5247,55248,
$5249,55258,5s358,55359, 55360,
$s370,55483,55484,55485,5s521,
ss522,ss523, tak,
$s260/s,5s596/s,55748/s,
ss236/1,ss237/1,ss379/1,
ss380/i,ss381/1,s5382/1i,
$s383/1,5s384/1,55486/1,
ss487/i,ss492/1,5s598/1,
$s599/1,5s600/1,ss601/1,
$s603/1,ss604/1,5s605/1

ss361
$s419(420),5s420,55584,55585
ss124,s55125,s5126
ss138,s5139,55140,55145,
$s146,s55147,55378,55562
$5566,5567,5s568,5s569,55570,
ss571,ss572,ss573,55574,5s575,
$s576,5s577,5s578,55579,55580,
ss581,5s582,5s583,
$s247/s,ss248/s,55249/s,
ss613/s,s5s614/s,ss615/s,
ss616/s,ss617/s,ss618/s

INT_O, INT 1,INT_2,INT_3,INT 4,
INT_5,INT 6,INT_7,INT_8,INT 9
task.l,task.2,task.3,task.4,
task.5,task.6,taskll,taskl?,
taskl3,taskl4,taskl5,taskl6,
taskl7,taskl8,taskl9,task20,
task2l,task22,task23,task24,
task26,task27,task28,task29,
task30,task31,task32,task33,
task34,task34 delta,task3s,
task35 delta,task36,task37a,
task37b,task38,task39,task40,
task41l,task42,taskd43,tasks4a,
task44b,taskd45a,task4sb,
task46,task46x,taskd47,task4s,
task49,task50,taskb51,task52,
task53,task57,task58,task59,
task60,ss740/s

task.rendezvous

task_storage_size
timing.calendar

timing.clock

type.character.operations
$s479,ss480,5ss481,55482,55493,
type.enumeration.attributes
type.enumeration.operations

type.erroneous.program
type.named_number

type.string.assignment

£-22

w (Vo) WO O
wn (=)} M W

W - W w
oY on o

task_num_.1,task_num_.5,
task num_ 10, task num_ 15,
task_ num_ 20, task num_25,
task _num_ 30, task? num_.1,
task2 _num_ 5 task2 _num_ 10
task2 " _num_ 15, task2 num_ 20,
task2 num_ 25, task2 num_ 30
task54, task55 task56
$s453, ss454 ss456 ss457,ss799,
35800,55801,55802,55803
$s452

$s486/1,s5s487/i,s5488/1,
ss489/1,55492/i
ss128(129),ss130,ss131,5s5251,
$5252,55253,55254,55255
ss132,ss133,55309,ss310

$s686
$s267(ss268..55269),55726,
ss727,ss728,
$s483/s,ss484/s,5s587/s,
$s529/1,ss530/1,ss531/1,
ss534/i
$s.99,ss111,ss112,55151,55243,
ss371,ss113/s,s5s149/s,ss151/s,
ss370/s

Received: from VMA.CC.CMU.EDU by SMSVMA.BITNET (Mailer R2.05) with BSMTP id
5331; Fri, 15 Dec 89 23:08:07 CST

Received: from CMUCCVMA by VMA.CC.CMU.EDU (Mailer R2.04) with BSMTP id 9677;
Fri, 15 Dec 89 23:58:58 EST

Received: from ajpo.sei.cmu.edu by vma.cc.cmu.edu (IBM VM SMTP R1.2.1) with TCP;
Fri, 15 Dec 89 23:58:55 EST

Received: by ajpo.sei.cmu.edu (5.54/2.2)

id AA03027; Fri, 15 Dec 89 23:52:02 EST

Message-Id: <8912160452.AA03027@ajpo.sei.cmu.edu>

Received: from umrvmb.umr.edu by RELAY.CS.NET id aald4410; 15 Dec 89 21:16 EST

Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2.1MX) with BSMTP
id 0927; Fri, 15 Dec 89 21:16:32 CST

Received: by SMSVMA (Mailer R2.05) id 5041; Fri, 15 Dec 89 21:15:52 CST

Date: Fri, 15 Dec 89 21:14:38 CST
From: Burlakoff <MIB413F%SMSVMA.BITNET@UMRVMB.UMR.EDU>
Subject: Keyword Index Update

To: ACECWG <EV-TEAM%AJPO.SEI.CMU.EDURrelay.cs.net>

December 15, 1989
ACECWG, Team

Reference your comments and suggestions on the ACEC Keyword Index at the
San Diego meeting.

Following are changes that have been implemented as a result of that
meeting. '

1. Category "classical" has been changed to "classical_benchmark".

2. Category "constant propagation" was an error and was deleted.
Those tests were already listed under "exception.constant.propagaton".

3. Category "expression" has been deleted and those tests have been
placed under the "statement" category.

3. Category "generic" has been changed to "generics"
4, Subcategory "bigint" has been changed to "int 32".

5. Category "interface" has been deleted and placed under
"pragma.interface".

6. Category "loop" has been deleted. Those tests have been placed
under "statement" with the subcategory “"control."

7. Category "math_dep" was an error. This has been changed to
"math.dependent”.

8. Category "parameters" has been deleted and placed as a subcategory
under “subprogram".

E-23

9. Subcategory "numeric_error" under category "pragma" has been
deleted. Those tests have been indexed under two new subcategories:
"pragma.suppress.division_check" and "pragma.suppress.overflow check".

As a results of these changes, the number of major categories have been
reduced to 26 as follows:

access
application
array
boolean
classical_benchmark
conversion
delay
exception
fixed

float
generics
integer

10

math
optimization
package
pragma
record
representation
scope
statement
storage
subprogram
task

timing

type

There were other comments and recommendations made at the meeting which
were not implemented. In some cases they were not implemented because I did
not fully understand the recommendation. In other cases, the suggestion could
result in a fairly major change, and further discussion may be desirable to be
certain that the correct implementation was made. I’ve listed these below (as
well as I could from my notes).

1. The Keyword Index should reflect non_timing tests such as: Delay,
Folding, Accuracy, Non parentheses tests, etc.

2. Subcategories of "exception" may be missing.
3. Determine other "Generics" categories such as "packages", etc.
4. Look into the possibility of categories of accessing variables.

(For example, is the category "package.overhead" correct)? The category
"scope" may fit into this grouping.

5. Review the group of tests under "task.language_ feature_tests" to
determine whether this indexing could be improved.

6. Consider changing the Keyword Index output format to improve the
output to show groups of primary, secondary and incidental tests.

E-24

Hard copies of the revised Keyword Index will be mailed to Nelson, Ray
and Sam. A net copy will be sent to Gary (upon request). In addition, a tape
will be mailed to Boeing. I should have these actions completed by Dec 20th.
Upon request, I can send others a copy (preferably via net).

In summary, I'd like to thank the members of the ACECWG for their time
and efforts in review of the Keyword Index. I’m certain that their
recommendations will result in a better quality final product.

Regards,
Mike Burlakoff......

Received: from CMUCCVMA by VMA.CC.CMU.EDU (Mailer R2.04) with BSMTP id 4147;
Wed, 25 Oct 89 02:07:55 EDT
Received: from ajpo.sei.cmu.edu by VMA.CC.CMU.EDU ; Wed, 25 Oct 89 02:07:51 EDT
Received: by ajpo.sei.cmu.edu (5.54/2.2)
id AA16828; Wed, 25 Oct 89 02:09:22 EDT

Message-Id: <8910250609.AA16828Rajpo.sei.cmu.edu>
Received: from umrvmb.umr.edu by RELAY.CS.NET id aa28963; 25 Oct 89 1:06 EDT
Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2.1MX) with BSMTP
id 6192; Wed, 25 Oct 89 01:07:02 CDT
Received: by SMSVMA (Mailer X1.25) id 3978; Wed, 25 Oct 89 01:03:40 CDT

Date: Wed, 25 Oct 89 01:02:10 CDT
From: Burlakoff <MIB413F%SMSVMA.BITNETGUMRVMB.UMR.EDU>
Subject: Keyword Index Update

To: ACECWG <EV-TEAM%AJPO.SEI.CMU.EDU@relay.cs.net>
ACECWG, Team:

Reference your comments and suggestions on the Keyword Index at the Sep
meeting.

The major categories (or subjects) for the index have been refined into
the below list of 30 items. I hope this is the kind of a high level structure
that you discussed (20-30 categories for naming purposes). This list
corresponds to the primary purpose of the tests (the highest level taxonomy
category) in the revised Keywora Index. (You may wish to withhold comments
until you’ve had an opportunity to review the new version).

access
application
array
boolean
classical
conversion
delay
exception
expression

E-25

fixed
float
generic
integer
interface
10

loop

math
optimization
package
parameters
pragma
record
representation
scope
statement
storage
subprogram
task
timing
type

The SS tests have been re-reviewed. I mostly left the primary purpose
of the tests as in the original version (except for the above major category
refinements). The major goal in the review was to determine "secondary" and
"incidental" purposes of the tests. This was accomplished. The new version
of the Keyword Index (with Test Name and LRM Reference) is now much longer (12
hard copy pages). Because of the size, I'11 mail a copy to each ACECWG member
by Nov. lst.

Regards,

December 18, 1989
SUBJECT: ACEC Recommendations

ACECWG:

Reference recent discussion by Dan, Nelson, Phil, others? on ACEC
recommendations. I’d-like to comment on two areas: 1) The single number
result and 2) The number of tests in the ACEC.

SINGLE NUMBER RESULT:

The developers of the ACEC attempted to remove "subjectivity" as much as
possible, and therefore, used statistical techniques to present results of

E-26

tests. Only a discussion of the "system factor" result has been given, and
not of the other Median statistical results. Recall that Median produces
other results such as "outliers", etc. which give the names of tests which are
exceptional (very poor or very good). For the "system factor" results, my
guess would be that systems which are rated lower, are actually poorer in
"overall" performance than systems with a better "single number" rating.

NUMBER OF TESTS:

I believe that we should carefully consider any recommendations for
reducing the current size of the ACEC from its current size (1200 or so in
Version 2.0) to something in the order of 200. I doubt that the developers of
the tests were paid on the basis of how many tests they could develop, and
therefore, I feel that "most" of the tests have a purpose or they wouldn’t be
in the suite. It seems that the possibility exists that the very tests that
were removed might be the one(s) that discover a serious error in a Ada
system.

Rather than discussing the "size" of the ACEC, I’d prefer to review the
coverage, and determine whether there are areas where performance testing
"weaknesses" exist. During this review, if in fact "fat" is discovered in
some areas, tests could be then be considered for removal.

Mike Burlakoff

November 3, 1989

Following is a summary of IV&V activities at Boeing on my Sep 28, 29 and
Oct 19, 20 trips:

I. NEW PERFORMANCE TESTS:

1. The complete set of tests were compiled and executed on the
VAX 780 using Tom L's *.COM files.

2. I spent a lot of time in getting all the support files I needed
into my separate area (e.g. GLOBAL, INCLUDE,...) before Tom’s *.COM files
wouid run. Also, some of the COM files point to specific directories and
these must be corrected. ‘

II. DEBUGGER ASSESSOR:

1. A large notebook of documentation exists which describes how to
run the scenarios and includes the source listings of the tests which are used
for the scenarios. A Tenplate for recording results has also been developed.

2. A few of the scenarios were successfully executed. There are a
few support files and some setup needed to run the tests.

IIT. LIBRARY ASSESSOR:

1. Nineteen separate scenarios have been developed. Fourteen of
these were executed usng Tom L’s *.COM files. The other 5 scenarios are such
that may consume large amounts of time, memory and disk space and were not
attempted. Once all the files were copied into a separate area, there was no
setup needed and all the 14 scenarios executed successfully.

E-27

2. A number of special programs have been developed for the
scenarios. A template for recording results is also available. The
documentation that I saw was directly in the *.COM files. A few comments and
suggestions were given to Tom L.

IV. DIAGNOSTICS ASSESSOR:

1. The Diagnostic Assessor consists of a large number of programs
with known source errors. A file (DIAGCMPR) documents the expected errors,
etc. that should occur for each of the programs and allows the user to compare
their output with the expected results. A Template is available for recording
the results.

2. A sample of the Assessor was successfully executed. Once the
correct files were copied into a separate area, there was very little setup.

3. Documentation describing the use of the system was still being
developed.

V. SINGLE SYSTEM ANALYSIS SYSTEM:

1. There are 146 tables which contain example output of sets of
related tests. Some of these have been manually generated and many have been
generated in an automated manner. Some of the data in the tables is actual
data, while much of it is sample data. Some of the tables are inconsistent
and incomplete. The SSA documentation was also incomplete. The "real"
software to generate these tables has not yet been completed. This is the
software that would read ACEC output log files and generate actual result
tables.

2. A high level review of the tables and much of the available
documentation was completed. Several comments and recommendations were given
to Kermit.

Mike Burlakoff

Mike Burlakoff

Rt 2, Box 224
Springfield, Mo. 65802
(417)-865-5422
October 25, 1989

SUBJECT: IV&V Testing at Boeing, October 19, 20, 1989.
T0: WRDC/AAAF -3

Mr. R. Szymanski

WPAFB, Oh 45433-6523
Ray:

Following is a summary of my activities at Boeing on Oct. 19, 20, 89.
I’11 also make a few comments regarding the updated Keyword Index.

1. A tape with the updated Keyword Index was delivered to Boeing on

Oct. 19. The tape contains a file sorted by Keyword Index and also files
sorted by Test Name and LRM.

E-28

2. A review was made of the Single System Analysis (SSA)
documentation and tables. There have been approximately 146 tables generated
for the SSA. These tables are examples (some contain actual data) of the
output that can be expected from the SSA when the SSA software is completed.
The tables and documentation are incomplete at this point. Also, as
previously noted, the SSA software to read the log file, etc. and generate the
"real" tables has not been completed. Several comments and recommendations on
the documentation and tables were written and given to Kermit Terrell.

3. The Library Assessor system was reviewed. There are 19 scenarios
developed. A template for recording results has also been developed. The
majority of the scenarios (14) were executed on Boeing’s VAX System. Except
for possible weaknesses in the VAX Ada Library system, all of the scenarios
executed successfully. A few comments and recommendations on the Library
Assessor were written and given to Tom Leavitt.

As usual, I received helpful assistance from all of the Boeing staff.
(Kermit for the SSA and Tom for the Library Assessor). Sam provided any other
support that I needed.

Now for an update on the Keyword Index activities.

At the Sep E&V meeting, the ACECWG requested that the tests and the

index be re-reviewed for:

a) Determining 20-30 categories that could be used for naming
purposes and,

b) In addition to the Primary purpose of the tests (as was done
in the initial version), determine any secondary and incidental purposes.

The re-review was completed on Oct. 15th. The tape delivered to
Boeing contains the results of the above review. The Keyword Index
information is much longer now (in my format) and requires about 12 pages in
hard copy. As noted to my message to the Team/ACECWG on this date, I’'11 send
the ACECWG members (info to you) a hard copy.

Regards,
Mike Burlakoff

Copy to: Sam Ashby

copPy

20 OCT 89
SUBJECT: Library Assessor Comments (IV&V at Boeing)

Following is a copy of the comments given to Boeing on this date.

1. Some of the assessor outputs are difficult to relate to the
template. Consider reviewing the *.COM files and add additional comments just

E-29

prior to the expected output. (This was especially true for LIB02 4 through
LIB02_17). A comment block just prior to the expected output may be useful.
For example:

e Je Je Je e Je Je de e % Je de de ... Yekdekkkk

!
! LIBO2_N Unit not present ...
!
!

“ee
e T Je Je e de Je de I e de de e V., Tedkdkkd

2. Consider moving LIB02_2 and LIB02 3 to LIB14. (Or note on the
template that they are accomplished at that time).

3. In general, excellent comments are provided in the *.COM files to
guide the user through the scenarios. As other systems are being tested,
review of the comments should be made, and additional helpful comments added.

4, Consider summarizing all of the *.COM file comments into one
document (A Library Assessor User’s Guide). Otherwise, users of other systems
may complain that the tests are VAX/VMS Ada oriented.

Mike Burlakoff

COPY
19 OCT 89
Subject: Single System Analysis Comments, (IV&V at Boeing)
Following is a copy of the comments given to Boeing on this date.

1. A1l of the present documentation needs to be reviewed and
corrected as necessary. Many of the cross references and file names are
incorrect and incomplete. See for example: OPT_FOLD.SSA.

2. A11 of the sub-groups need to be reviewed for completeness. That
is, are major groups of tests missing? The paired comparisons of
optimizations are useful, however, they are largely incomplete. Would most
users want a complete report (table) which shows all optimizations related to
say, Folding? The present paired comparisons only give a small portion of the
complete set.

3. Review the names of all the Tables File Names and re-name all
"SS..." names to be descriptive of the purpose of the group.

4. I'm not certain how useful the "Bar Chart" and "Similiar Groups"
information will be. Consider using this space for other information.
Possibilities include other statistical data from the log file, code size,
compilation time, etc.

Mike Burlakoff

E-30

Received: by SMSVMA (Mailer X1.25) id 9556; Mon, 02 Oct 89 13:17:52 CDT

Date: Mon, 02 Oct 89 13:15:58 CDT
From: Burlakoff <MIB413F@SMSVMA>
Subject: ACEC IVV Testing
To: Szymanski <SZYMANSK%AJPO.SEI.CMU.EDUGRELAY.CS.NET>
cc: MIB413FGSMSVMA
October 2, 1989
Ray:

Following is a summary of the testing performed at Boelng on
September 28, 29, 1989.

1. The set of new performance tests were compiled and executed on the
DEC/Ada Vax System. Boeing’s .COM files were used. A1l tests in the given
* com files compiled and executed successfully. One observation that I had
was that many of the new tests contained extensive comments describing the
background and purpose of the test.

2. A sample of the Debugger Assessor was reviewed and several of the
scenarios were successfully executed. The documenation describing the system
and procedures for use has been prepared and is quite extensive.

3. A sample of the Diagnostics Assessor was reviewed and successfully
executed. Documentation describing the system and its use is in the process
of being developed.

I received helpful assistance from all of the Boeing staff. (Tom,
Kermit for the new tests; Barbara Lindsey for the Debugger and Tom Lee for the
Diagnostics Assessor).

Another trip is scheduled for October 19, 20. Planned activities
will be to review the Single System Analysis system, and additional review and
testing of the other Version 2 deliveries.

Regards
Mike Burlakoff

Copy to: Sam Ashby

Received: from CMUCCVMA by SMSVMA.BITNET (Mailer X1.25) with BSMTP id 5435;
Fri, 13 Oct 89 14:44:26 CDT

Received: from CMUCCVMA by CMUCCVMA (Mailer X1.25) with BSMTP id 0894; Fri, 13
Oct 89 15:38:25 EDT

Received: from ajpo.sei.cmu.edu by VMA.CC.CMU.EDU ; Fri, 13 Oct 89 15:38:19 EDT

Received: by ajpo.sei.cmu.edu (5.54/2.2)

id AA04351; Fri, 13 Oct 89 15:36:28 EDT

Message-Id: <8910131936.AA04351@ajpo.sei.cmu.edu>

Received: from umrvmb.umr.edu by RELAY.CS.NET id aa28714; 13 Oct 89 14:33 EDT

Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2.1MX) with BSMTP
id 5110; Fri, 13 Oct 89 14:33:45 CDT

Received: by SMSVMA (Mailer X1.25) id 5314; Fri, 13 Oct 89 14:25:18 CDT

Date: Fri, 13 Oct 89 14:23:24 CDT
From: Burlakoff <MIB413F%SMSVMA.BITNET@UMRVMB.UMR.EDU>
Subject: ACEC Test Plan/Procedures Comments

To: EV-TEAM%AJPO.SEI.CMU.EDU@relay.cs.net

Following are my comments to the ACEC Test Plan and Test Procedures
documents, both dated September 27, 1989.

Test Plan Document:

P.6. The first para includes the Assessors as part of the Opertional
Software, but the third para states that the test suite is a set of
performance tests. It should be stated that the bullets only apply to the
performance portion of the test suite.

P12, para 9.1.1.5. It should be added that all variations of FORMAT
produced anciliary data will be tested. As stated, it appears that only one
set of MED_DATA CONSTRUCTOR output will be tested.

P14-16. The plan only discusses testing relating to the performance
tests and the support software. It needs to be updated to describe the
testing plan for the assessors.

P15. para 9.2.2.1. Will all assessors be tested on all these hosts/
targets?

SUMMARY: The document primarily discusses testing of the performance
tests and support software. Additional sections need to be added to describe
the plan for testing each of the assessors.

Test Procedures Document:

P5. One bullet should be added to summarize the procedures for testing
the assessors.

P7. Sec 4. A separate section should be added to discuss the

procedures for testing the assessors. For example, the following should be
included:

E-32

Test programs and documentation needed for the testing.
Set up procedures (compile GLOBAL, etc).

Execution procedures.

Method(s) of logging the results.

Procedures for analyzing the results.

N W -
o« o o o o

P8, para 4.1.1. The Sperry 1631 is not included in this list. Also,
will all assessors be tested on all of these systems? If so, the intro para
should include assessors.

P8-9, Sec 4.1. Is a separate para needed to describe the method of
performing correctness analysis for each assessor?

SUMMARY: As stated in the above comments for the Test Plan, this
document also needs to be updated for testing of the assessors. To my
knowledge, Boeing has (and will) expend a great deal of time and effort in the
testing process. This should be reflected in these documents.

Mike Burlakoff

13 JUN 89
Comments - ACEC Support S/W, SPS, 5 Jun 89
P14,15, 3.1.2.2.2. INCLUDE PDL: Should mention that "Code Expansion Size"
computation is initiated in the INCLUDE program and then "included” in
STOPTIME2. (or mentioned on pages 35-40, 3.3.1.1.2)

P19. Parameters: in_file,out_file, inline, inlast are not described on
P17,18.

P27-31, 3.1.6.3. SSA outputs should have some textual description (or
references) (can’t understand).

P38&42. A number of CONSTANT’S are in the source code for FORMAT and INCLUDE
but are not listed here.

P42, 3.3.2.4.2. 1t should be stated that the time is "minimum" time.
P45, 3.3.3.1.2. Section ?? should be 3.3.3.1.1 (P44).
P45, 3.3.1.2. Proc ‘Get_Time_Stamp’ is missing from the chart.

P47,48. Variable names ending in ‘_time’ are misleading. These could also be
space size or compile time.

P60-62, 3.3.4.4.1. A number of CONSTANT’s in the source are missing here.
The same is true of the list of TYPE’s. The variable list seems OK. Locals
in procs are not included here.

£-33

P64,65. The chart on P.65 shows Proc ’large_enough’ but no textual
description is given on P.64. Also, no PDL is given for this proc.

P67. No info is given on the design of the statistical techniques used in
proc ‘do_comparison’. This is a major output of the report.

P64-72. Should a discussion be included on the changes needed to add new

capabilities to the SSA? For example: Add to Method Type, Table Array Type,
etc.

Mike Burlakoff

16 JUN 89
Comments to ACEC Operational Software SPS, 5 JUN 89

General Comment: The document is not written at the design level but
rather mostly includes material from the Users and Readers Guides and Working
Papers and the Software Requirements Spec, dated April 17, 1989. Those
documents have previously been reviewed and written comments were completed.
It should be noted that the requirements for the ACEC additions (I/0,
Debugger, Diagnostics, Library, etc) have been described in more detail.
However, as previously stated, design information is generally not given.

Specific Comments:

P18. Last 3 ’-'. The description of new capabilities are described as
"assessment procedure’. Would ’‘assessment capability’ be more correct?

P42. 3.2.1.4.6.2.2. Why should selecting a carriage return keep the cursor
in the same position?

P60. 3.3.1.17. Tracing. Would another useful test be to check whether
selective (e.g. every nth value) and conditional tracing are permitted? This
would prevent 10MBytes of traced output.
P95. 2nd and 3rd bullets. Do these require deleting the Subunit (are not
independent and should not be bullets).

P99. Bullets 2, 4, and 6 should be removed. As in the previous comment, they
imply an independent action.

P106,107. Figures 3 and 4 are outdated (do not include Med_Data_Constructor).
P119. 2nd para. Typo: ‘symbolic debugger’ should be ’program library system’.
Mike Burlakoff.......

E-34

Received: from CMUCCVMA by SMSVMA.BITNET (Mailer X1.25) with BSMTP id 8214;
Mon, 24 Apr 89 20:54:54 CDT
Received: from CMUCCVMA by CMUCCVMA (Mailer X1.25) with BSMTP id 6986; Mon, 24
Apr 89 21:53:13 EDT

Received: from ajpo.sei.cmu.edu by VMA.CC.CMU.EDL , Mon, 24 Apr 89 21:53:09 EDT
Received: by ajpo.sei.cmu.edu (5.54/2.2)

id AA03781; Mon, 24 Apr 89 21:42:16 EST

Message-Id: <8904250242.AA03781@ajpo.sei.cmu.edu>
Received: from umrvmb.umr.edu by RELAY.CS.NET id aa0l1062; 24 Apr 89 21:07 EDT
Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2) with BSMTP id
5531; Mon, 24 Apr 89 18:40:56 CDT

Received: by SMSVMA (Mailer X1.25) id 7769; Mon, 24 Apr 89 18:38:56 CDT

Date: Mon, 24 Apr 89 18:38:26 CDT
From: Burlakoff <MIB413F%SMSVMA.BITNET@UMRVMB.UMR.EDU>
Subject: ACEC Support S/W SRS Comments

To: ACECWG <EV-TEAM%AJPO.SEI.CMU.EDU@relay.cs.net>

ACECWG, Team:

Following are my comments to the Support Software, Software Requirements
Specification, dated 17 April 1989. Comments which were previously made on
Working Papers on these topics are not duplicated herein.

P7, para 1.2., subpara 2. FORMAT. The sentence may be clearer if "for the
SINGLE SYSTEM ANALYSIS program” were in parentheses.

P12, para 3.4.2, 1st para, last 2 lines. Can the user still optionally
manually prepare FORMAT output (construct MED_DATA) for direct input to MEDIAN
without using the MED DATA CONSTRUCTOR program?

P12, para 3.4.2, 3rd para, 2nd line. Typo: should be "systems".

P12, para 3.4.2.1. 1st sentence. 1 could not find any details in the
Operational Software SRS regarding the file generated by the execution of the
Operational Software. The only details I could find were in Sec 4 of the
Readers Guide. This should also be corrected in the 1lst sentence of para
3.4.2.2.

P13, 1st para. Acd a sentence something like: "See Sec 4 of the ACEC Readers
Guide for a complete description of the remainder of the fields".

P15, para 3.4.3.1, 2nd para, last line. It should be stated that only the

;a:t3insgance of duplicated test runs are considered (or refer to paras
.4.3.2,3).

P17, para 3.4.3.3, last para. Typo: "Some of these The... "
P18, 2nd para. Either complete the reference of refer to Sec 2.2.
P21. Task Scheduling bullets. Could information on some of the Tasking

implemeptation options be provided. For example, Select options (LRM 9.7.1),
scheduling order of tasks of the same priority (LRM 9.8), etc.

E-35

P22, 1/0 bullets. This could be a large subarea. Would another option be to
include these in the proposed set of ACEC I/0 tests rather than in SSA?

P20-24, Sec 3.4.5.2. Most of the subareas/topics mentioned here are excellent
(additional) ACEC analysis capabilities. Would it be worthwhile to review
each of these to determine whether they might apply equally well to the "whole
ACEC" rather than just SSA? That is, determine whether it might be useful to
modify MEDIAN to output analysis between systems.

P26, para 3.6.5. Will the Users Guide contain specific examples on the use of
all of the Support Software?

Mike Burlakoff

Received: from CMUCCVMA by SMSVMA.BITNET (Mailer X1.25) with BSMTP id 9283;
Sat, 01 Apr 89 12:07:48 CST
Received: from CMUCCVMA by CMUCCVMA (Mailer X1.25) with BSMTP id 3187; Sat, 01
Apr 89 13:07:29 EST
Received: from ajpo.sei.cmu.edu by VMA.CC.CMU.EDU ; Sat, 01 Apr 89 13:07:21 EST
Received: by ajpo.sei.cmu.edu (5.54/2.2)
id AA18922; Sat, 1 Apr 89 13:01:21 EST

Message-Id: <8904011801.AA18922@ajpo.sei.cmu.edu>

Received: from umrvmb.umr.edu by RELAY.CS.NET id 2a27842; 1 Apr 89 9:00 EST
Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2) with BSMTP id
3504; Sat, 01 Apr 89 09:00:53 CDT

Received: by SMSVMA (Mailer X1.25) id 8832; Sat, 01 Apr 89 07:57:38 CST

Date: Sat, 01 Apr 89 07:55:38 CST
From: Burlakoff <MIB413F%SMSVMA.BITNET@UMRVMB.UMR.EDU>
Subject: ACEC Single System Anal Working Paper Comments

To: ACECWG <EV-TEAM%AJPO.SEI.CMU.EDU@relay.cs.net>
ACECWG, Team:

Following are comments to Boeing’s ACEC Working Paper titled: Single
System Analysis:

1) Sec 1, Para 2. A basic capability of the tool should be to report
timing/space results such as is presently being produced using the
FORMAT/MEDIAN tools. If I were executing the ACEC on my system, my primary
are of interest would be timing/space results of the individual tests (and of
course results of tests which failed to compile/execute). 1I’d also like
totals/summaries of these.

2) I must have had a misconception on the purpose of this tool.
Somehow, I thought that the primary purpose was to output the results that are
presently being done by FORMAT/MEDIAN (where it is appropriate to do so, such
as time/space results). This would save the user the effort that is presently
needed to set up outputs of other systems, even when comparisons are not
desired. However, the capabilities that are being proposed in the paper

E-36

(Optimizations, Code Expansion Size, Compiler and Linker Issues, Run Time
Issues and Language Features) seem to apply equally to ACEC testing/analysis
regardless of whether the ACEC is being used for comparison with other systems
of executed on a single system. In this regard, the comments that follow, are
viewed as "whole" ACEC changes (in cases where the capability is not presently
being performed).

3) The idea of grouping the ACEC into sets of related tests in a formal
manner should provide a number of useful analysis areas for the users of the
system. Could MEDIAN be enhanced to perform much of the analysis for
comparison of performance of these sets between systems?

4) Sec 4, last para. Would capacity limits be more appropriate in the
Diagnostic set of tests. (See p. 14,15 of the Diagnostic paper).

5) Sec 5, last bullet. Don’t understand this? (Consistency in ...).

6) Sec 6. Note that comparison with other systems is recommended here.
As mentioned in para 2) above, it just seems as though all of the
recommendations apply regardless of the ACEC mode.

Mike Burlakoff

Received: from CMUCCVMA by SMSVMA.BITNET (Mailer X1.25) with BSMTP id 5077;
Fri, 37 Mar 89 00:43:10 CST
Received: from CMUCCVMA by CMUCCVMA (Mailer X1.25) with BSMTP id 6916; Fri, 31
Mar 89 01:42:51 EST
Received: from ajpo.sei.cmu.edu by VMA.CC.CMU.EDU ; Fri, 31 Mar 89 01:42:46 EST
Received: by ajpo.sei.cmu.edu (5.54/2.2)
id AA26060; Fri, 31 Mar 89 01:37:22 EST
Message-Id: <8903310637.AA26060Cajpo.sei.cmu.edu>
Received: from umrvmb.umr.edu by RELAY.CS.NET id aa04630; 30 Mar 89 21:00 EST
Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2) with BSMTP id
3409; Thu, 30 Mar 89 21:01:46 CDT
Received: by SMSVMA (Mailer X1.25) id 4380; Thu, 30 Mar 89 19:58:35 CST

Date: Thu, 30 Mar 89 19:56:59 CST
From: Burlakoff <MIB413F%SMSVMA.BITNET@UMRVMB.UMR.EDU>
Subject: ACEC Database Working Paper Comments

To: ACFCWG <EV-TEAM%AJPO.SEI.CMU.EDU@relay.cs.net>

ACECWG, Team:

Following are comments on Boeing’s Phase 3 Database Test Problems
Working Paper 25, 16 September 1988.

' }) Is.there a possibility of including in the ACEC an actual DBMS that
is written in Adq? If a portable system could be found (and permission to use
it is granted), it may be that it could be a aid in determining efficiency of

E-37

serveral file I/0 areas. The Ada IC Newsletter implies that several of these
types of systems are under development. I realize that this is easier said
than done: 1Is the system truly portable, is the implementation good, is it
proprietary...? (But hopefully it will be worth the time to investigate this
possibility).

2) Since these applications would likely execute on large, multi-user
systems, we should also emphasize that the tests should be run during several
typical workload periods. (This is briefly mentioned on p. 14). Median could
then process the results from the different times and produce comparison
evaluations.

3) P.1, 4th para. It should also be noted that in addition to the I/0
hardware that the system software device drivers, I/0 interrupt routines, 1/0
processing routines, scheduling algorithms (the operating system
implementation) would all have an effect on the efficiencies.

4) P.4, 4th para. What is meant by B-tree Support Package? Is more
than basic tree traversal intended?

5) P.10, Sec 4. Would a consideration be to use several of the well
known basic sort algorithms and compare them for efficiency. Hopefully, the
underlying I/0 software may use different access methods for some of these.

6) P13, Sec 6. 1I’'d agree with the recommendation. In particular, some
of the operations needed for additional I/0 pattern tests may directly (or
closely) apply to B-Tree, Partial Match, and Sort. For example, operations
such as: File creation/deletion, read/write the same record repetitively,
read/write in sequential or random order, and variations of insertions and
deletions could be similiar in those areas.

Mike Burlakoff

Received: from CMUCCVMA by SMSVMA.BITNET (Mailer X1.25) with BSMTP id 6126;
Tue, 28 Mar 89 17:40:53 CST
Received: from CMUCCVMA by CMUCCVMA (Mailer X1.25) with BSMTP id 3209; Tue, 28
Mar 89 17:58:14 EST
Received: from ajpo.sei.cmu.edu by VMA.CC.CMU.EDU ; Tue, 28 Mar 89 17:58:07 EST
Received: by ajpo.sei.cmu.edu (5.54/2.2)
id AA04977; Tue, 28 Mar 89 17:50:40 EST

Message-1d: <8903282250.AA04977Rajpo.sei.cmu.edu>

Received: from umrvmb.umr.edu by RELAY.CS.NET id aal7416; 28 Mar 89 16:57 EST
Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2) with BSMTP id
3251; Tue, 28 Mar 89 16:58:02 CDT

Received: by SMSVMA (Mailer X1.25) id 5810; Tue, 28 Mar 89 15:54:56 CST

Date: Tue, 28 Mar 89 15:53:34 CST
From: Burlakoff <MIB413F%SMSVMA.BITNET@UMRVMB.UMR.EDU>
Subject: ACEC Library Robustness Paper Comments

To: ACECWG <EV-TEAM%AJPO.SEI.CMU.EDURrelay.cs.net>

£-38

ACECWG, Team:

Following are comments to Boeing’s ACEC Working Paper on Library
Robustness:

1) P.1, Sec 2. Other possible areas of evaluation could be:
Completeness of capabilities, useablity and user documentation. Following
initial design requirements, a list of desired standard capabilities could be
developed. This list could then be used to assess these kinds of areas.

2) P.1, 2nd bullet, 2nd para. It should be noted that storage access
may also depend on the implementation design.

3) P.3, 2nd para. As the development proceeds, it may determined that
quite a large number of scenarios are needed for a complete evaluation.

4) P.7, para 11. What is meant by "consistency"?

5) P.8, para 12. To fully test the "version" capability, it may be
necessary to construct a small sample with several versions.

6) P.8, para 13. The metric should be clarified: "Is the space from
deleted units reused".

7) P.8, para 14. Does this item belong in the Linker test suite?

8) P.10, Sec 4. In addition, it may be desirable to provide a simple
"usability" result.

9) For some of the timing measurement on multi-user systems, it may be
desirable to submit batch jobs which run at several times during the day
(peak, 3 am, etc), to determine the difference in access times.

Summary: The scenarios that are listed seem to be an excellent and
varied set and may be complete. However, prior to final selection of the
evaluation set, several "popular" vendors librarys should be reviewed to
determine if additional scenarios are needed. The final set should then be
prioritized.

Mike Burlakoff

Received: from CMUCCVMA by SMSVMA.BITNET (Mailer X1.25) with BSMTP id 0201;
Tue, 21 Mar 89 22:51:43 CST

Received: from CMUCCVMA by CMUCCVMA (Mailer X1.25) with BSMTP id 8803; Tue, 21
Mar 89 23:48:57 EST

Received: from ajpo.sei.cmu.edu by VMA.CC.CMU.EDU ; Tue, 21 Mar 89 23:48:06 EST
Received: by ajpo.sei.cmu.edu (5.54/2.2)

id AA08395; Tue, 21 Mar 89 23:43:18 EST
Message-Id: <8903220443.AA08395@ajpo.sei.cmu.edu>
Received: from umrvmb.umr.edu by RELAY.CS.NET id aal5295; 21 Mar 89 23:42 EST

E-39

Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2) with BSMTP id
2942; Tue, 21 Mar 89 22:42:34 CST
Received: by SMSVMA (Mailer X1.25) id 0181; Tue, 21 Mar 89 22:39:42 CST

Date: Tue, 21 Mar 89 22:37:26 CST
From: Burlakoff <MIB413F%SMSVMA.BITNET@UMRVMB.UMR.EDU>
Subject: ACEC Diagnostics Working Paper Comments

To: ACECWG <EV-TEAMZAJPO.SEI.CMU.EDURrelay.cs.net>

ACECWG, Team:

Following are my comments to Boeing’s ACEC Diagnostics Working
Paper, along with the extension (Working Paper 23, 9 JUN 88).

1) Early in the paper, a discussion should be given which describes the
specific approach for determining the test problems to be included in this
suite of tests. There are a large number of potential problems discussed.
Many of these seem important and are of the "hard" category for Compilers,
Linkers and Run Time Systems. It is apparent that these were chosen based on
varied experiences, and thus represent professional opinion of examples of
needed diagnostics testing.

It would seem that the first step for this development would be for a
team of experienced professionals to review documentation related to these
systems. For example, a review of the LRM would probably point the need for
several areas that require diagnostics testing. (e.g., semantics, not
adequately covered by the ACVC, causing particular user difficulties, etc).
For the Linker and Run Time Systems, an approach might be to review the
documentation of several "well known" systems to determine whether desired
diagnostic capabilities are lacking. Following these reviews, the
recommendations should be listed in some priority order. The highest priority
tests could then be completed (based on contractual agreements) in the initial
phase of the effort.

2) P.1, list of requirements. Recommended additions:

a) The test problems should be chosen to improve APSE
disgnostics quality and thus enhance the correctness of the resuiting programs
and aid programmer productivity.

b) To aid in user evaluation of the test results, each test
problem will produce a textual description of the error and the expected
diagnostic message.

3) P. 1, requirement 4. Should the term "APSE" be used here?

4) P. 2, para 2. I agree that the time to run the tests should be
minimized. Even this will be difficult, since various error conditions on
some systems may terminate the job and require re-start of the test suite.
However, as stated in the paper, the analysis will largely be a manual
process. 1 question whether the goal should be to complete the analysis in
one day. This time will largely depend on the experience (and interest) of
the user. As previously mentioned in 2b) above, clear textual information
output to the user will be an aid in the analysis process.

E-40

5) P. 3,4. It may be the case that it will be necessary to use one
or two of the suggested approaches (or combinations) to determine which
provides the most useful results. In any case, it would seem that some form
of the rating system recommended in the Presser/Benson paper is needed.
(particularly for compiler evaluation).

6) P. 6. I don’t believe that the paper should limit the scope of
the effort at the outset. In a sense, this is a new area of technology in the
evaluation prucess. It would seem to be difficult (at this point) to
determine the scope of the effort.

7) P.8.9. Gocd discussion. It appears that point 4 on P.9 is the
best alternative. It will probably be the case that it will not be necessary
to run all of the tests through the editor.

8) P.10-28. As a further aid to user evaluation, each test problem
should identify the LRM reference and state whether the error violates the
LRM, is a poor (dangerous) practice, etc.

9) P.10-17, Excellent test examples. I believe that para 10 on P.17
is a matter of preference. It would seem that it would cause some additional
processing time, and some users (myself) might prefer to have the error
reported at each occurrence.

10) P.19, 3rd para. "Those that have made the extra effort...". How
will the evaluation reward these "goodies".

11) P.21, program segment. Unless I'm missing something, the "K<1"
and the accompanying explanation seem in conflict.

12) P.26, para 20. Should this test belong in the Linker section?
13) P.27, para 23. Should this para be combined with para 7?

14) P.31, para 12. Should this belong in the "Library Diagnostics"
set.

15) P.32, para 1. This recommended test would seem to be in the "very
hard" category. My understanding is that deadlocks are very difficult to
detect, and that if a system could detect the deadlock, then it would correct
the error and a deadlock would not exist. However, the test, as proposed,
seems like a good exercise.

16) P.33-34. Are we proposing here to verify which of the four
techniques a Runtime System might use? 1 don’t understand the relationship of
the four techniques to the planned diagnostic testing.

17) P.32-37. The excellent examples which are presented are largely
limited to diagnostics for access types. This again points to the need for
study of needed diagnostics in other areas.

Mike Burlakoff.....

E-41

Received: from CMUCCVMA by SMSVMA.BITNET (Mailer X1.25) with BSMTP id 4091;
Sat, 18 Mar 89 11:51:08 CST v
Received: from CMUCCVMA by CMUCCVMA (Mailer X1.25) with BSMTP id 4445; Sat, 18
Mar 89 10:41:40 EST
Received: from ajpo.sei.c¢mu.edu by VMA.CC.CMU.EDU ; Sat, 18 Mar 89 10:41:32 EST
Received: by ajpo.sei.cmu.edu (5.54/2.2)
id AA00847; Fri, 17 Mar 89 19:16:20 EST
Message-Id: <8903180016.AA00847@ajpo.sei.cmu.edu>
Received: from umrvmb.umr.edu by RELAY.CS.NET id aa01040; 17 Mar 89 18:51 EST
Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2) with BSMTP id
2768; Fri, 17 Mar 89 17:52:02 CST
Received: by SMSVMA (Mailer X1.25) id 3032; Fri, 17 Mar 89 17:49:22 CST

Date: Fri, 17 Mar 89 17:47:44 CST
From: Burlakoff <MIB413F%SMSVMA.BITNETGUMRVMB.UMR.EDU>
Subject: ACEC WP22 (Symbolic Debugger) Comments

To: ACECWG <EV-TEAM%AJPO.SEI.CMU.EDUGrelay.cs.net>
ACECWG, Team:

Following are comm2nts on ACEC Working Paper 22, 31 May 1988, Symbolic
Debugger Evaluation:

1) In contrasting development of a Symbolic Debugger Evaluation
Capability with Ada Compiler Evaluation suites such as the ACVC or ACEC, the
major difference is that the LRM served as a basis for those developments (the
ACVC in particular). Since there is no such standard for Symbolic Debuggers,
the evaluation capibility will consist of tests which are believed to
represent typical capabilities in Symbolic Debuggers. The Working Paper lists
19 Scenarios which are intended to be non-exhaustive and typical of tests to
be included. It appears that these were gathered in no particular order, and
represent capabilities that the implementor felt were most important. In this
regard, the following recommendation is made:

a) Begin with an "approved" Symbolic Debugging Capabities 1list
and insure that the test suite includes scenarios to evaluate each item on the
list. It is understood that no such approved/accepted standard presently
exists. The starting point might be the checklist Table 6.5-1 in the E&V
Guidebook. This 1ist could be refined during reviews and as the design
becomes firm.

2) It is probably the case that most existing Symbolic Debuggers are
multi-Tanguage, with Ada extensions. (the VAX/VMS for example). This raises
the question of whether this capability should be "universal" or Ada only. In
reviewing the 19 Scenarios in the Working Paper, I categorized 11 as
"Universal” and 8 as "Ada only". Therefore, we could consider designing the
evaluation tool in 2 parts: 1) Universal and 2) Ada extensions.

3) In addition to the test suite, the evaluator should include an E&V
type of capability to permit evaluation of areas such as: Useability,
Performance and Documentation. This could be something as simple as a one
page evaluation list which is completed at the end of the execution sequence.

£-42

4) The majority of the scenarios seem to be essential, and several
will likely challenge the facilities of most debuggers. Some of them (such as
infinite loop detection and detection of deadlock) may be over and above the
call of duty of typical debuggers.

Mike Burlakoff

Received: from VMA.CC.CMU.EDU by SMSVMA.BITNET (Mailer X1.25) with BSMTP id
6874; Wed, 22 Nov 89 15:53:47 CST
Received: from CMUCCVMA by VMA.CC.CMU.EDU (Mailer R2.04) with BSMTP id 1139;
Wed, 22 Nov 89 16:52:53 EST
Received: from ajpo.sei.cmu.edu by vma.cc.cmu.edu (IBM VM SMTP R1.2.1) with TCP;
Wed, 22 Nov 89 16:52:47 EST
Received: by ajpo.sei.cmu.edu (5.54/2.2)
id AA25133; Wed, 22 Nov 89 16:52:08 EST

Message-Id: <8911222152.AA25133Rajpo.sei.cmu.edu>
Received: from umrvmb.umr.edu by RELAY.CS.NET id aa03312; 22 Nov 89 15:48 EST
Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2.1MX) with BSMTP
id 8096; Wed, 22 Nov 89 15:49:12 CST
Received: by SMSVMA (Mailer X1.25) id 6808; Wed, 22 Nov 89 15:47:23 CST

Date: Wed, 22 Nov 89 15:46:11 CST
From: Burlakoff <MIB413F%SMSVMA.BITNETGUMRVMB.UMR.EDU>
Subject: Topics for ACEC V3, and V4

To: ACECWG <EV-TEAM%AJPO.SEI.CMU.EDU@relay.cs.net>
Ray, ACECWG, Team:

In reviewing your list, I found it necessary (in many cases) to
consider/rate "line items" under your major categories. Also, I’ve made
recommendatons for additions in a few areas.

1. Capacity testing: Grade C.
2. Systematic compile speed testing: Grade C.
3. Additional performance tests: Grade B.

a. The Cache processing tests could also be useful for analysis on
general virtual (paging) systems (even if they don’t use cache memories).
b. ADDED: Performance tests for each math function. This should

give the user the execution time of each function, and also include the
accuracy of the function (in decimal digits).

c. ADDED: String applications.
4. Packaging:

a. Where multiple test problems could preclude running the rest of
the problems: Grade A.

b. Two version discussion: Grade C.
5. Unreliable time measurements. This recommendation implies significant
éessiqf to determine whether measurements are actually more reliable:

rade B.

E-43

6. Documentation.
g a. Analysis guide. Need more info on what is to be contained in the
guide.

b. Indexes to the guides: Grade B.

c. Intro to Benchmarking: Grade C.

d. Non-performance discussion: Grade B.

e. ADDED. Much of the discussion of MEDIAN output is written at the
level of understanding of a statistician. Additional examples/explanations of
this output would aid the common user to easily understand (and make better
use of) the MEDIAN results. I believe terms like "system factors, outliers,
etc.” could be better defined at the layman level.

7. MEDIAN.

a. I don’t feel qualified to make recommendations on the first 3
items. (e.g. not familiar with ANOVA, how much overhead would be required to
compute confidence intervals...)

b. The Single System Analysis Tool will provide analysis of a number
of ACEC problem subsets. It may be that some of these will also be useful for
analysis by MEDIAN. It should be possible to request analysis by MEDIAN of
any desired ACEC subset: Grade A.

c. User interface. The recommendation that MEDIAN read the *.log
files directly is a major change in the ACEC support software area. This
implies that MEDIAN treats the raw output as data and does not require any
other tools to produce the present results. Minor modifications to the
present *.log formats/output will be needed: Grade A.

Check confidence levels between runs: Grade C.
d. Output: Grade B.

8. Continuing support: Grade A.

9. ADDED. Work on "Lessons learned from Versions 1 and 2". Considering
the many valuable and useful inputs from individuals and groups (1like the
ACECWG), and the many resulting changes made for Version 2, I would expect
similiar inputs as the ACEC is distributed and used more widely. In that
respect, I would somehow 1ist this as a separate (large) category. This is
not "maintenance" as such, rather, something like "user requirements.”

Mike Burlakoff

E-44

15 JUN 89
AN APPROACH TO AN INPUT DATA FILE FOR MEDIAN
There has been some recent discussion regarding ACEC Support Software
overhead, and the desirablity of using a data file for processing test
results. In this regard, the following is a possible approch.

PROPOSED SEQUENCE:

! System 1 ! lExpanded !

I Test ' -> ! Log ! ->

! Execution ! ! File !

! ! ! ! ! Reduced with ! ! Read and !
! Editor and ! I Processed !
! Concatenated ! -> ! by MEDIAN ! -> Report

| System 2 ! lExpanded ! ! into one ! ! !

! Test ! ->) Log ! -> ! Data File !

! Execution ! I File ! ! !

\ 1 1 1

->
CONCEPT:
1. As tests are executed, the "log-file" would output:

a) The present information
b) An additional line (interspersed with the present
information), identified with something like "+++" and containing: TIME,
TIME_ERROR CODE, and SPACE.
2. A user searches these log files (editor, etc.) for TEST_NAME,
TIME, TIME_ERROR_CODE and SPACE and concatenates all files for all systems
into one data file.
3. MEDIAN reads the data file into the arrays which are presently
already declared in MED DATA and produces the statistical report.

REQUIREMENTS/CHANGES :

1. In each test, change the present PUT("TEST NAME,description...) to
PUT("+++TEST_NAME,description...).

2. Each test which can produce an error code (in the test source
code) will also set a GLOBAL variable TIME_ERROR CODE.

3. In STOPTIME2, set TIME_ERROR_CODE for “"err_unreliable_time" or for
"not confidence_interval within_tolerance (#)".

4, Prior to return from STOPTIME2, output a new line with:

“+++, TIME, TIME_ERROR CODE, SPACE".

5. Modify MEDIAN to declare the present MED_DATA types and arrays and
read the data file into the arrays. (The TIME_ERROR _CODE simply replaces the
TIME for that test in MEDIAN). MEDIAN then produces the present report.

Mike Burlakoff

E-45

Received: from CMUCCVMA by SMSVMA.BITNET (Mailer X1.25) with BSMTP id 9425;
Mon, 13 Mar 89 23:31:45 CST

Received: from CMUCCVMA by CMUCCVMA (Mailer X1.25) with BSMTP id 8465; Mon, 13
Mar 89 18:22:40 EST

Received: from ajpo.sei.cmu.edu by VMA.CC.CMU.EDU ; Mon, 13 Mar 89 18:22:32 EST
Received: by ajpo.sei.cmu.edu (5.54/2.2)

id AA23931; Mon, 13 Mar 89 18:15:20 EST

Message-Id: <8903132315.AA23931@ajpo.sei.cmu.edu>

Received: from umrvmb.umr.edu by RELAY.CS.NET id aa29266; 13 Mar 89 17:40 EST
Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2) with BSMTP id
2423; Mon, 13 Mar 89 16:29:57 CST

Received: by SMSVMA (Mailer X1.25) id 8465; Mon, 13 Mar 89 16:27:25 CST

Date: Mon, 13 Mar 89 16:25:54 CST
From: Burlakoff <MIB413F%SMSVMA.BITNET@UMRVMB.UMR.EDU>
Subject: ACECWG/PC Comments

To: Nelson <EV-TEAM%AJPO.SEI.CMU.EDUGrelay.cs.net>

Nelson:

Following are some recommended additions to the questionnaire. [’ve
preceded each of my added lines with a '*’.

Name, Phone, Organization, Address ...

Have you used the ACEC?

Do you plan to use it?

What compiler(s) are you evaluating?

*What computer system and operating system did you use?

*How long did it take you to install the ACEC on your system? Please discuss
any particular problems/recommendations.

*How long did it take you to run the ACEC? Please discuss any particular
problems/recommendations.

*Did you run the analysis tools (FORMAT and Median). If yes, did they provide
the desired results. Please discuss any particular problems/recommendations
and comment on the ease of use/understanding.

*Which ACEC documentation did you use? Was it complete and helpful? Please
comment on the ease of use and overall quality of the documentation?

*Did the ACEC provide a desired efficiency analysis of any areas of concern in
your system?

*Do you plan to publish the results of the use of the ACEC or of the
evaluation of the compiler(s)? If so, where?

E-46

*Do you have any suggestions for improvements or extensions of the ACEC?
*Do you have any criticisms of the current ACEC?

*Are you interested in attending a Birds of a Feather session to discuss the
ACEC at a SIGAda or AdaJUG meeting?

Please mail to (envelope enclosed):

Mr. Raymond Szymanski

WRDC/AAAF

Wright Patterson AFB, OH 45433-6523
szymansk@ajpo.sei.cmu.edu

Mike Burlakoff

Received: from CMUCCVMA by SMSVMA.BITNET (Mailer X1.25) with BSMTP id 5054;
Sun, 12 Mar 89 18:48:40 CST

Received: from CMUCCVMA by CMUCCVMA (Mailer X1.25) with BSMTP id 2893; Sun, 12
Mar 89 19:47:16 EST

Received: from ajpo.sei.cmu.edu by VMA.CC.CMU.EDU ; Sun, 12 Mar 89 19:47:08 EST
Received: by ajpo.sei.cmu.edu (5.54/2.2)

id AA16106; Sun, 12 Mar 89 19:43:44 EST

Message-Id: <8903130043.AA16106@ajpo.sei.cmu.edu>

Received: from umrvmb.umr.edu by RELAY.CS.NET id aa29959; 12 Mar 89 19:45 EST
Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2) with BSMTP id
2325; Sat, 11 Mar 89 16:50:24 CST

Received: by SMSVMA (Mailer X1.25) id 3704; Sat, 11 Mar 89 16:47:57 CST

Date: Sat, 11 Mar 89 16:47:21 CST
From: Burlakoff <MIB413F%SMSVMA.BITNETGUMRVMB.UMR.EDU>
Subject: ACEC/PIWG: An E&V'rs Viewpoint

To: EV-TEAM%AJPO.SEI.CMU.EDURrelay.cs.net

Sandi, Ray, Team:

Reference the recent discussions on this topic. As a user of the ACEC
the past year, I thought 1'd offer my 1 1/2 cents worth as follows:

My familiarity with the PIWG, U. of Mich, AES, ASR and Aerospace suites
is primarily from reading some material and talking with users of a couple of
the test suites. The developers of these other systems (who were primarily
volunteers) are to be commended for their splendid products and efforts.
However, my conclusion is that none of those are in the same class as the ACEC
and therefore do not measure up to the ACEC. I say this because of:
1) extent of coverage, 2) complexity of the issues that are covered, and in

3) overall quality of the ACEC. Folluwing are points which I believe justify
these statements.

€-47

1) The ACEC is a planned, systematic, formal development requiring
person years for the development. The developers are recognized, skilled
professionals.

2) The test suite coverage is extensive, and attempts to evaluate
many of the more difficult runtime issues (task loading, interrupt processing,
design trade-offs, exception handling, file 1/0, ...;.

3) A great deal of design/development effort has been expended to
provide an accurate and usable test environment.

a. The timing code is extensive and provides information on the
accuracy that was achieved (or not achieved).

b. The individual test template structure is such that it is
easy for the user to construct and insert new tests into the environment.

c. The analysis tools provide excellent statistical comparisons
and summaries.

4) The ACEC is an on-going effort that is being reviewed (E&V) and
monitored for quality.

5) The documentation is complete, extensive and of high quality. For
example, the Readers Guide contains excellent background material on a number
of technical issues and trade offs relating to evaluations.

6) The test suite is sponsored and supported by the government.

In view of the above, I believe that the ACEC, (given an unbiased
evaluation by users of the system) will become the industry standard, and
should be promoted as such.

Mike Burlakoff

Received: from CMUCCVMA by SMSVMA.BITNET (Mailer X1.25) with BSMTP id 3234;
Wed, 08 Mar 89 19:24:03 CST
Received: from CMUCCVMA by CMUCCVMA (Mailer X1.25) with BSMTP id 8785; Wed, 08
Mar 89 16:52:56 EST

Received: from ajpo.sei.cmu.edu by VMA.CC.CMU.EDU ; Wed, 08 Mar 89 16:52:44 EST
Received: by ajpo.sei.cmu.edu (5.54/2.2)

id AA20129; Wed, 8 Mar 89 16:47:23 EST

Message-Id: <8903082147.AA20129@ajpo.sei.cmu.edu>

Received: from umrvmb.umr.edu by RELAY.CS.NET id aal5084; 8 Mar 89 14:32 EST
Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2) with BSMTP id
2055; Wed, 08 Mar 89 12:20:37 CST

Received: by SMSVMA (Mailer X1.25) id 1048; Wed, 08 Mar 89 12:15:18 CST

Date: Wed, 08 Mar 89 12:13:19 CST
From: Burlakoff <MIB413F%SMSVMA.BITNET@UMRVMB.UMR.EDU>
Subject: CLASSWG - Ref Man Tools Chapter 5

To: Peter <FV-TEAM%AJPO.SEI.CMU.EDU@relay.cs.net>

E-48

Peter:
Following are my thoughts on a few of the references:

5.1.3 Code Generator (Back End)
Cross References:
Functions:
[Code Generation 7.1.6.7.x]

7.1.6.7.x Code Generation
Description:

Using a Compiler generated translation form such as an intermediate
language to produce object code. The object code machine language may be for
the host or a target computer system.

Cross References: (Same as 7.1.6.7?)
Guidebook References: HELP! (?Choose those that apply from 7.1.6.7)

5.2.1 Host-Target System Cross-Assembler

Same as 5.1.4 Assembler, except add to the description of 7.1.6.6 the
following: "The translation may be to the host machine language or to a
target computer systems machine language".

5.2.8 Host-to-Target Downloader

Functions:

[Downloading 7.1.6.15]

(Note: We may wish to discuss whether Linking/Loading belongs
under 7.1.6, or whether a new category such as 7.4 (Data Communications/Data
Transfer) is needed. For consistency at this time, I’'11 place
Downloading/Uploading in this section).

7.1.6.15 Downloading
Description:

The process of moving programs or data from a host to a target computer
system over a data communications medium. The transfer may be to main memory
or to secondary storage.

Cross References: (?Same as 7.1.6.13)
Guidebook References: HELP! I suspect that a new checklist should be
developed for Downloading/Uploading.

5.2.9 Target-to-Host Uploader
Functions:

[Uploading 7.1.6.16]

7.1.6.16 Uploading
Description:
The process of moving programs or data from target to a host computer

system over a data communications medium. The transfer is generally to
secondary storage.

Cross References: (?Same as 7.1.6.13)
Guidebook References: ?New Checklist needed.

E-49

5.9.2 Size Estimator

Functions:
[Sizing Analysis 7.3.1.30
Resource Utilization 7.3.2.12)
5.11.8 Input and OQutput Services
Functions:
[Input/Output Support 7.2.3.2]

Note: I don’t believe that we should limit the 7.2.3.2
Description to "standard I/0 devices". Most Embedded systems access
non-standard I/0 devices (sensors, etc). Also, because this is such a large
support area, I'd consider expanding 7.2.3.2 to much more detail.

5.11.9 Performance Monitor

Functions:
[Timing 7.3.2.14
Tuning 7.3.2.15]
Mike

Received: from CMUCCVMA by SMSVMA.BITNET (Mailer X1.25) with BSMTP id 2659;
Wed, 23 Aug 89 22:07:04 CDT
Received: from CMUCCVMA by CMUCCVMA (Mailer X1.25) with BSMTP id 8966; Wed, 23
Aug 89 23:08:25 EDT
Received: from ajpo.sei.cmu.edu by VMA.CC.CMU.EDU ; Wed, 23 Aug 89 23:08:20 EDT
Received: by ajpo.sei.cmu.edu (5.54/2.2)
id AA11313; Wed, 23 Aug 89 23:06:48 EDT

Message-Id: <8908240306.AA11313@ajpo.sei.cmu.edu>
Received: from umrvmb.umr.edu by RELAY.CS.NET id aa21822; 23 Aug 89 23:03 EDT
Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2.1MX) with BSMTP
id 1625; Wed, 23 Aug 89 22:02:59 CDT
Received: by SMSVMA (Mailer X1.25) id 2657; Wed, 23 Aug 89 22:01:02 CDT

Date: Wed, 23 Aug 89 22:00:13 CDT
From: Burlakoff <MIB413F%SMSVMA.BITNETGUMRVMB.UMR.EDU>
Subject: PTS Procedures Comments

To: Stripe <STRIPET%JALCF.WPAFB.AF.MIL@relay.cs.net>
Cc: EV-TEAM%AJPO.SEI.CMU.EDUGrelay.cs.net
August 23, 1989

Following are my comments to the Performance Testing Service (PTS),
14 Aug 89, Preliminary Draft.

Pii, 1st para, last sentence. I can forsee cases whereby the primary purpose

of the PTS is to evaluate (say a new) compiler’s performance. (Not in
conjunction with application needs, or to suppliement any other process).

E-50

P1, 1.2, 1st sentence. Should "... the AJPO has recognized the need for
information ... " be changed to "... the AJPO has recognized the need for
evaluation ... ". This might emphasize that we are doing more than just
providing information.

P2, 5th line. Shouldn’t there be some sort of "grading" system? What is the
purpose of all this if all compilers which are tested equally pass?

P2, 1.3, 1st sentence. It would seem that the primary objective of the PTS is
to provide the means to evaluate compiler quality and then provide the results
of the evaluation (rating summary, etc).

P7, 3.1. Should another paragraph be added to state that the AJPO issues a
PTS certification number? (see pl5, 5.5).

P9, 4.3. Although it is probably understood, I'd add to the assessment that
the software must be well documented.

P10, 4.5. 1’d strongly recommend that the customer NOT determine
customization. This leaves the testing open to possible unethical
manipulation. To my knowledge the developer of the ACEC went to great lengths
to make the test suite portable. The only customization that I know of is in
the math library. 1 would state that no test suite modifications are
permitted without prior AJPO/PTF approval. Let all tests be run against all
systems. The results should show any tests which should not apply to this
compiler system.

P12, 5.1. Should the agreement show any proposed implementation dependent
information which might affect the results?

P15, 5.5. Will AJPO issue a PTS certification number if 25% of the tests did
not execute?

Major Comment. The document sidesteps all "pass/fail" and "grading" issues.
I believe that there must be a certain point where if a compiler system fails
a portion of the test system in terms of performance, usability, etc., that
system would NOT be certified (even though testing was performed by a PTF).
The document needs to specify rules and procedures in these cases.

Mike Burlakoff........

Received: from CMUCCVMA by SMSVMA.BITNET (Mailer X1.25) with BSMTP id 9293;
Sat, 01 Apr 89 12:12:16 CST
Recelved from CMUCCVMA by CMUCCVMA (Mailer X1.25) with BSMTP id 3197; Sat, 01
Apr 89 13:10:36 EST
Received: from ajpo.sei.cmu.edu by VMA.CC.CMU.EDU ; Sat, 01 Apr 89 13:10:27 EST
Received: by ajpo.sei.cmu.edu (5.54/2.2)
id AA18929; Sat, 1 Apr 89 13:02:06 EST
Message-Id: <8904011802.AA18929Rajpo.sei.cmu.edu>

£-51

Received: from umrvmb.umr.edu by RELAY.CS.NET id aa27887; 1 Apr 89 9:03 EST
Received: from SMSVMA.BITNET by UMRVMB.UMR.EDU (IBM VM SMTP R1.2) with BSMTP id
3505; Sat, 01 Apr 89 09:04:22 CDT

Received: by SMSVMA (Mailer X1.25) id 8837; Sat, 01 Apr 89 08:01:06 CST

Date: Sat, 01 Apr 89 07:58:48 CST
From: Burlakoff <MIB413F%SMSVMA.BITNETGUMRVMB.UMR.EDU>
Subject: Ada Compiler Eval P&G Comments

To: EV-TEAM%AJPO.SEI.CMU.EDU@relay.cs.net

Team:

Following are my comments to the Ada Compiler Evaluation Procedures
and Guidelines document, Version 1.0, dated 1 MAR 89. ("1" refers to line
no.):

15. The sentence seems incomplete. Would "performance of Ada
compilation systems" be better?

1141. Typo. 5.1.11 should be "Prepare the Performance Summary".

1245-251. I don’t agree. Formal evaluation results do imply the
usability of Ada for particular applications. They do not warrant, but they
do imply.

1308-309. Does the EAR include the Performance Summary? If so, then it
should be stated.

1330. Would the term "procedures" rather than "process" be more
correct?

1390-488. Many of the responsibilities of the AEO, ADMO and AEF
conflict and are duplicated. For example, the AEF’s and the AEO both review
disputes and evaluate test plans. Would the AEQ be qualified to participate
in deciding on the withdrawal of test programs? The intent of the
organizational structure seems to be three areas of responsibility:
1) Management/Admin, 2) ACEC Test Suite Maintenance and Distribution and
3) Evaluation Performance (as presently defined on lines 448-466). This
section and also lines 654-850 should be reviewed and modified as necessary to
insure that an efficient organization is proposed.

1510. "contains" may be a better term than "includes". (To prevent
confusion with the INCLUDE process).

1511. "object code size" may be misleading. Object code could include
header information, link item types, relocation info, etc. The ACEC measures
execution size of the program in terms of machine language instructions and
data segments. This is also mentioned on lines 515 and 838.

1611-523. It might be mentioned here that on some systems, sizing
information and compilation times are difficult to obtain.

E-52

1568. Under the proposed organization, shouldn’t problems be reported
to the ADMO?

1661-849. The evaluation steps and procedures seem overly involved,
complex and require a great deal of administrative overhead. Following is a
high level summary of another approach to the steps and procedures.

1. The client obtains the ACEC. (Included are instructions for
requesting an evaluation).

2. The client requests an evaluation by completing the
Evaluation Test Plan. The client states whether they require assistance in
customizing the support software and in running the test suite.

3. The AEF approved Evaluation Test Plan constitutes an
Evaluation Agreement.

4. The client prepares the test suite for execution (with
possible AEF assistance), executes the test suite and analysis tools and
submits the results to the AEF. Included is client information on Evaluation
Issues.

5. The AEF reviews the results and arranges to visit the client
for the purpose of formal demonstration of test execution.

6. The test suite (or possibly a random sample) are re-executed
at the clients facility. At this time, Evaluation Issues are discussed.
Those that cannot be resolved will be noted in the final report for later
resolution by the AJPO.

7. The AEF analyzes the results and prepares the final EAR and
Performance Summary.

1874-889. I probably don’t fully understand the definition of "derived"
on lines 298-302 (seems vague). In this regard, I'm not certain that all
"derived" implementations require re-evaluation. Does this matter need to be
studied further?

11037-1041. It seems as though hardware and operating systems should be
mentioned.

11044. Typo: "several"
11088. "weight or size". Poor examples?

Mike Burlakoff

E-53

January 14, 1989

Nelson:

Following are my comments to the ACSH. 1’11 try to make clear page/para
references so my comments can be easily understood. 1I’d like to keep the
draft copy for reference. (It won’t be reproduced or distributed).

Reference the specific points that you asked us to consider. I won’t
have any specific comments on any of them. However, I hope that the following
comments will give you information on my opinion of some of those.

P6, 1st answer, 2nd sentence: Do you mean "Errors in the runtime system ...",
or something 1ike "A poorly designed runtime system (excessive overhead, poor
functional accuracy ..."?

P6, last answer: Could a point be made here that one of the objectives of Ada
is to "share" or "reuse" code for cost savings ...

P7, 3rd answer: Another point that may be worth mentioning is that in the
past, developers largely accepted the language/compiler and completed the
development. (Then why do we need to evaluate Ada comilers today)?

P8, 1st question: Typo: "optionization”

P8, 2nd answer: I’d explain what I meant by optimization bugs. It also
might be useful to add that debuggers themselves may contain bugs...

P9, 3rd answer, 4th line: Typo: "may great".

P9, last answer: Unless you saw the results of the AES evalualtions, I doubt
if I would say it was a "notable" exception. Also, see my later comments
regarding the other test suites (chapter 8).

P11, 1st answer: Typo: "of the shelf".
P13, 5th para. Typo. 1.11 should be 1.12.

P18, 4th para. I know that it is not your intent, but this could be
misunderstood to read that for $500. an evaluation will be performed.

P18, para 3.2.4. I don’t agree that a rehosted system suggests compile time
emphasis. Primarily because rehosting largely deals with new operating system
interfaces. I would not suggest only subset retesting for either
rehost/retarget. In my view, you need the complete evaluation.

P18, para 3.2.5, lst sentence. Rather than saying "for one user will not be
acceptable to another...", would something like: "for one user will not meet
the requirements of another...". For example, your evaluation of the real
time performance is acceptable to me, but I need more emphasis on I/0...

E-54

P16-19, section 3.2. You discuss this in Section 9.1, but would it be useful
if you gave a summary of your view of what a evaluation should consist of (as
a summary of this section). For example:

1) A comprehensive "approved" benchmark test suite execution.
2) Approved checklist evaluation.

3) cee

P21, Intro para. It seems to me that the most important benchmark criteria is

the skill, knowledge and experience of the benchmark designers/developers (as
well as the users of the benchmarks).

P21, an.para, 4th sentence. Is this a problem with benchmarking or simply
that one should be aware that benchmarks execute in the environment and
reflect the environment.

P24, Operating and Runtime System bullet. Another major cause of results
variation is the effects of a multiprogramming/multiprocessing environment.

P24, para 4.3. Somewhere, you might mention that some benchmarks use
operating system computed CPU time and others will compute time using wall
clock time.

P25, 3rd para. Typo: "A logic analyzer a".

P27. Bullets. It seems like all the points should apply, regardless of
whether compile time or runtime.

P32, 2nd para. Typo: "Ada program...".

P32, 3rd para. Don’t understand . "state of practice has raised
expections ...". (typo?)

P32/33, bullets/questions. Another bullet might be whether more than one user
can simultaneously invoke the compiler (and the consequences, if any). (or is
that what is meant by the P33 1st bullet)?

P34, para 5.4. Would this be the proper place to emphasize the usefullness of
"interactive help" information availability.

P35, para 5.4.3. One of the major documentation requirements should be a
clear explanation of each compiler error message in an easy to find/read
format (categorized by severity).

P37, 4th para, last sentence. I doubt if many compiler users would actually
evaluate operating systems. However, as you’ve pointed out they need to be
aware of capabilities and performance characteristics.

P38, Bare Machine Environment. Should the middle block include "Executive
Functions" in the text description?

E-55

P39, sec 6.2.1, 1st para. I don’t agree with the implication that much can be
learned in a "short" amount of time by simply inspecting assembly code. It
generally requires highly technical, experienced people (who are also familiar
with compiler code generation) to analyze compiler code generation and the
many available options to the compiler writer. This comment also applies to
the last para on page 40 for sec 6.2.1.

P41, First 5 bullets. Should a bullet be added to read "Input/Output"?
P42, last bullet. Typo: "and redundent".

P43, 3rd para. I agree that it’s usually difficult to determine the size of
the runtime system. Is it because no one usually takes the time to write a
program to automatically read the load map...?

P47, para 6.8. You may wish to mention that the ACEC contains several tests
which test interrupt processing performance in a tasking environment.

P53, para 7.2.1. "more fully covered in chapter 6". I couldn’t find the
material in chapter 6 (but probably didn’t spend enough time looking).

P54, para 7.2.3. In every project that I've been involved in, downloading/
uploading is a real ordeal (time consuming, complex, error prone, etc). (in
more "modern" times, there may have been improvements). In any case, if you’d
have some recommendations for developers/evaluators in this area, it would
probably be useful info.

P55, 2nd para. Typo: "conduct on".

P54-56, Sec 7.3. My early experience with debuggers was that they were
unreliable, contained errors themselves and broke under stress. (Hopefully
they’ve improved). When using them I always wondered if the bug was in my
program or the debugger. Therefore, I recommend emphasizing that the user be
aware of the quality, history, etc. of these tools.

P56, last para, Ist line. Typo: "a more".

P56-57, sec 7.4. As with debuggers, users need to be aware of the quality,
possible errors, etc. in simulators.

P57, last para. I understand your intention of "integration". But, I for
one, believe that the worst possible APSE is one whereby all of the tools are
so called "integrated". Those APSEs are large, complex, costly and never work
properly.

P59-66, chapter 8.

My familiarity with the PIWG, U. of Mich, AES, ASR and Aerospace suites
is primarily from reading your material and talking with users of a couple of
the test suites. The developers of these other systems (who were primarily
volunteers) are to be commended for their splendid products and efforts.
However, my conclusion is that none of these are in the same class or measure

E-56

up to: 1) the extent of coverage, 2) complexity of the issues that are
covered, or in 3) the overall quality of the ACEC. I say this because:

1) The ACEC is a planned, systematic, formal development requiring
person years for the development. The developers are recognized, skilled
professionals.

2) The test suite coverage is extensive, and attempts to evaluate
many of the more difficult runtime issues (task loading, interrupt processing,
design trade-offs, exception handling, file 1/0, ...).

3) A great deal of design/development effort has been expended to
provide an accurate and usable test environment.

a. The timing code is extensive and provides information on the
accuracy that was achieved (or not achieved).

b. The individual test template structure is such that it is
easy for the user to construct and insert new tests into the environment.

c. The analysis tools provide excellent statistical comparisons
and summaries.

4) The ACEC is an on-going effort (I don’t have the information on
the contractual status) that is being reviewed (E&V) and monitored for
quality.

5) The documentation is complete, extensive and of high quality. For
example, the Readers Guide contains excellent background material on a number
of technical issues and trade offs relating to evaluations.

6) The test suite is sponsored and supported by the government.

In view of the above, I believe that the ACEC, (given an unbiased
evaluation by users of the system) will become the industry standard, and
should be promoted as such. My recommendation, therefore, is that a separate
chapter be devoted to the ACEC description.

In reviewing ACEC documentation this past Summer, one of my major
criticisms was that the documentation did not sufficiently describe the extent
of coverage of issues. In this regard, I'd recommend greatly expanding the
information that is currently on pages 61-63. 1’d chose relevent material
from the Users and Readers Guides and the VDD. For example, the VDD could be

used to expand the present bullets listed on page 62. Following is an
example:

0 Classical tests such as Ackerman function, Dhrystone,
Whetstone, ..

(] Avionics application study

0 Kalman filter tests

E-57

0 Delay statements with various delays in continuity/non-
continuity...

0 Data encryption standards programs

0 Interrupt timing tests

0 I/0 processing tests

N} Memory reclamation tests

0 Language feature tests (referenced to the LRM)
(] Tasking applications tests

P68, recommended additional bullet: One of the major areas may be the
determination of the maturity of the systems. (Used on large/small
projects...).

P68, para 8. The third sentence seems confusing? (Checklist data ...).
P69, 2nd para, 4th sentence. Since the instruction set architechture is where
the real work is done, my preference would be to select the desired target

system and insist that the compilation system provide the quality of support
that is needed.

P69, last para. Difficult to understand: "required for both evaluation...".
P70, last 2 sentences. 1I’d question any shortcut recommendations.

P72, para 9.7, intro para. In general, I'd agree with the statement for MIS
applications. But is it true for embedded systems? Aren’t we likely to
upgrade our weapons systems? Wouldn’t there be real cost savings if we could
port some of the applications to the new target?

P74, 1st 3 bullets. Possible bullets to be added:

0 Past contractual history (overruns, but no useful delivery)
0 Maintenance response times
(] Quality of documentation. Are there procedures to update the

documentation as the system is updated.

In summary, the ACEC is a top quality product which contains a great
deal of useful information. It should be a welcome source of information to
managers (as well as technicians) as an aid in the evaluation process.

Mike Burlakoff

E-58

APPENDIX F

E&V Project Presentations
Raymond Szymanski, Project Manager

For a majority of the presentations listed below, presentation material
was selected from a core set of approximately seventy-five viewfoils. The
number of foils used per presentation varied from a mere few to over sixty.
(Sixty-nine foils were used at the Naval Post-Graduate School (NPGS) lecture,
December 1989.) Throughout the current reporting period many of the foils in
the core set were updated to reflect the progress of the E&V Project, its
technology developments and surrounding environment.

To reduce the volume of available presention material for this
publication, much of which would be replication, only the material from the
NPGS lecture (p. F-4), the Tri-Ada ‘89 presentation (p. F-39), and status
foils for each of the contractual efforts (ACEC, p. F-52; CIVC, p. F-59;
Reference System, p. F-65) are included herein. The NPGS lecture and contract
status foils should give the reader some insight into the type of material
which was used to represent the E&V Project during the specified reporting
period and at the same time bring much of it up to date. The Tri-Ada ‘89
presentation material is included, along with the text, because its contents
differs significantly from the core set of foils and also marks the first time
that mandated use of E&V Project-developed technology was publicly debated.

In addition to the presentations listed below, the E&V Project Manager
has given innumerable presentations/briefings internal to the management of
the the Ada Joint Program Office and the US Air Force. This includes the
Director and staff of the Ada Joint Program Office, Air Force Systems Command,
Air Force Aeronautical Systems Division, Air Force Avionics Laboratory, and
Air Force Wright Research and Development Center. Although much of the
material used for these presentations was technical in nature it also included
significant amounts of administrative and managerial detail which is not
appropriate for this report. Therefore, this material is not included herein.

The E&V Project Manager apologizes, in advance, to any organization
which received an E&V Project presentation for the specified reporting period
but is not listed below. An earnest attempt was made to be thorough and
complete in compiling the 1ist. But, alas, after five years of managing the
E&V Project and chairing the E&V Team meetings, the project manager is growing
somewhat feeble and subject to an occasional error.

List of E&V Project Presentations for the period 1 December 1988 --
1 August 1990

August 1990 Ada Executive Officials Washington, DC
Meeting

June 1990 Ada Board Meeting Washington, DC

June 1990 SAF/AQK- Deputy Assistant Washington, DC

Secretary for Comminications
Computers and Logistics

F-1

June 1990 Ada Executive Officials Washington, DC
Evaluation and Validation
Working Group

June 1990 HQ USAF/SCTT Washington, DC

June 1990 Ada Europe Dublin, Ireland

May 1990 23rd Quarterly E&V Team Pittsburgh, PA
Meeting

May 1990 Space Defense Initiative Washington, DC
Office

May 1990 HQ USAF/SCTIA Washington, DC

April 1990 Software Technology Support Salt Lake City
Center Conference

March 1990 1990 Air Force Avionics Las Vegas, NV
Symposium

March 1990 22nd Quarterly E&V Team Denver, CO
Meeting

February 1990 Ada Joint User’s Group San Diego, CA
Meeting

December 1989 Standards Impimentation Washington, DC
Policy Board

December 1989 Naval Post Graduate School Monterrey, CA
Guest Lecturer

December 1989 21st Quarterly E&V Team San Diego, CA
Meeting

November 1989 Government Accounting Office Washington, DC

October 1989 Tri-Ada Conference Pittsburgh, PA

September 1989 IEEE Environments Working San Francisco
Group Meeting

July 1989 Ada Joint User’s Group Denver, CO
Meeting

June 1989 Washington Ada Symposium Washington, DC

June 1989 20th Quarterly E&V Team Dayton, OH
Meeting

F-2

May 1989

May 1989

May 1989

March 1989

April 1989

April 1989

April 1989
February 1989

December 1988

December 1988

Wright Research and

Development Center Ada Forum

US Air Force

Systems Acquisition School

National Aerospace

Electronics Conference

19th Quarterly E&V Team

Meeting

Undersecretary of Defense
for Research and Engineering

Electronic Industries Assoc.
Computer Resources Committee

Ada Joint Program Office

Automated Logistics Manage-
ment Systems Activity (ARMY)

Special Interest Group/Ada

Conference

18th Quarterly E&V Team

Meeting

F-3

Dayton, OH

San Antonio, TX

Dayton, OH

Denver, CO

Washington, DC

Dayton, OH

Washington, DC
St. Louis, MO

Los Angeles, CA

San Diego, CA

| MES 119158

EVALUATION AND VALIDATION
2 (ESV)
$ OF

$/Ada PROGRAMMING SUPPORT
ENVIRONMENTS

NAVAL POSTGRADUATE SCHOOL
NOVEMBER 1989

BRIEFER:
RAYMOND SZYMANSKI

T-101

OVERVIEW

e E&YV Task: Background

o E&V Team

o E&V Reference System

e Ada Compiler Evaluation Capabiiity (ACEC)

o CAIS Implementation Validation Capability (CIVC)

e Conclusions

F-4

OVERVIEW
‘ @ Definitions
s) ¢ E&V Task: Background —(: Took Purnoss
@ Task Process
e E&V Team
e E&V Reference System
e Ada Compiler Evaluation Capability (ACEC)

e CAIS Implementation Validation Capability (CIVC)

e Conclusions

T 16378

(@3) E&V TEAM PURPOSE

e Provide DoD with a forum to discuss evaluation and
validation issues .

e Provide technical expertise in development of
E&V technology

Team products
Task products

o Represent E&V point of view in the larger community

F-5

DEFINITIONS

APSE -- Ada Programming Support Environments
E & V — Evaluation and Validation
Evaluation -- Assessment of Performance and Quality

Validation —- Assessment of Conformance to a Standard

APSE DEFINITION

F-6

130

NEED FOR APSE E&V TECHNOLOGY

@ IMPORTANCE OF ENVIRONMENT DECISIONS
. Large, Critical Ada-based Systems
Major Investments for Software Developers
Major Influence on Software Maintenance

® DIFFICULTY OF ASSESSING APSEs AND
TOOLS

APSEs are Complex Systems
Great Diversity of Choice and Viewpoints
Rapid Technological Change

Lack of Relevant Historical Data

(O [7])

E&V TASK PURPOSE

To Provide a Focal Point for Addressing Community Need
for E&V Technology — Assess APSEs and Components

ACTIVITIES 1) Identify and Define Requirements
2) Develop Selected Elements
3) Encourage Others to Develop Some
4) Collect Relevant information
5) Disseminate Information

F-7

E&V TASK PROCESS
SPONSOR Ada Joint Program Office
LEADER Air Force Avionics Laboratory
Mr. Raymond Szymanski, Chalr
TECHNICAL ADVISORS The E&V Team ~- Government, Industry and
Academia Representatives
CONTRACTORS TASC — Technical Support and Reference

System
Boeing -~ Ada Compiler Evaluation Capability

(ACEC)
SofTech —- CAIS* Validation

Capability (CIVC)

* Common APSE Interface Set -- MIL-STD-1838

@ E&V MANAGEMENT STRUCTURE

Ada JOINT
PROGRAM
OFFICE (AJPO)

I

AIR FORCE

ARMY NAVY

pea
rwmw ¢

ERYV
TEAM
CHAIRPERSON

F

| L | | A |

EAV TEAM %

ISTINGUISHED
REVIEWERS

ACEC civic REF SYS SUPPORT

1

I 1 | 1

REQWG .

SEVWG

COOROWG ACECWG civewa CLASSWG

F-8

OVERVIEW

o E&V Task: Rackground
/ Team Purpose
® o E&V Team o Wethod of O

Method of Operation
® Team Products
_® Reiation to the Acqusition Process

e E&V Reference System
e Ada Compiler Evaluation Capability (ACEC)
e CAIS Implementation Valldatlon Capabillity (CIVC) |

e Conclusions

@ E&V TEAM

o DIRECTIONAL MANAGEMENT WORKING GROUPS
o TECHNICAL MANAGEMENT WORKING GROUPS

F-9

@ E&V TEAM
(CONT'D)

e DIRECTIONAL MANAGEMENT WORKING GROUPS

o REQUIREMENTS WORKING GROUP
o STANDARDS EVALUATION WORKING GROUP
o COORDINATION WORKING GROUP

OVERVIEW

e E&V Task: Background

o E&V Team S Pupose
@ Organization and Use
s) ¢ E&V Reference System Reterence Manusl

@ Relation to the Acqusition
Process

e Ada Compiler Evaluation Capability (ACEC)
e CAIS Implementation Validation Capability (CIVC)

e Conclusions

F-10

THE “TOOLS AND AIDS”
DOCUMENT

@ A PRODUCT OF THE REQUIREMENTS WORKING GROUP
(REQWG) OF THE APSE E&V TEAM

e REFLECTS EARLIER WORK* OF REQWG, DISCUSSIONS
WITH ALL E&V TEAM MEMBERS, AND SURVEYS OF
APPROPRIATE ARPANET-MILNET INTEREST GROUPS

¢ PURPOSE
To identify the community's E&V Technology needs —
kinds of assessors to acquire

To prioritize the needs

To provide information to those willing/able to fund E&V
Technology Development

*“Requirements for the Evaluation and Validation of Ada Programming Support Environments,
Version 2.0," REQWG, December 19815

@ E&V TEAM
(CONT'D)

o TECHNICAL MANAGEMENT WORKING GROUPS

o E&V TECHNOLOGY CLASSIFICATION WORKING GROUP
o Ada COMPILER EVALUATION CAPABILITY WORKING GROUP

o CAIS IMPLEMENTATION VALIDATION CAPABILITY
WORKING GROUP

F-11

E&V TEAM PRODUCTS

e E&V TEAM PUBLIC REPORT

o EEV TEAM REQUIREMENTS ANALYSIS DOCUMENT
* E&V TOOLS AND AIDS DOCUMENT

o E&V TEAM PUBLIC COCRDINATION DOCUMENT

© CAIS ISSUES AND STRATEGIES DOCUMENT

o E&V TEAM MEETING MINUTES

© E&V TEAM WHITE PAPERS

o UNLIMITED DISTRIBUTION
© AVAILABLE FROM NTIC/DTIC
© NORMALLY PRODUCED ON AN ANNUAL BASIS

1 e

RELATION TO THE ACQUISITION PROCESS

e Opportunity to provide inputs to DoD E&V technology
focal point

Increase DoD awareness of E&V technology needs

Opportunity to impact E&V technology developments
in process

Educational opportunity

F-12

USE OF THE REFERENCE SYSTEM

i 00
$ o) a9

Users Consult the Reference Manual to Extract: or Directly Consuit

or (2) Pointers to

Sections In
(1) Usetul the Guidebook...
information
Directly from
the Manual

Manual

Guidebook

...Which Provides Information About
E&V Tools and Techniques

the Guidebook

(&) WHY USE THE ERV REFERENCE SYSTEM ?
8

THE E&V REFERENCE SYSTEM SHOULD HELP USERS

T0:

o GAIN OVERALL UNDERSTANDING OF APSEs AND APPROACHES
TO ASSESSMENT

o FIND USEFUL INFORMATION -- TERMINOLOGY, DEFINITIONS,
RELATIONSHIPS

o FIND ASSESSMENT CRITERIA /| METRICS AND “POINTERS"
TO SPECIFIC EVALUATION OR VALIDATION TECHNIQUES

 FIND DESCRIPTIONS OF EVALUATION OR VALIDATION TECHNIQUES
e FIND GUIDANCE IN THE SELECTION, INTERPRETATION, AND

INTEGRATION OF EVALUATION AND VALIDATION TECHNIQUES
AND RESULTS

F-13

REFERENCE MANUAL ORGANIZATION

J

A ,'fPPEches&

q ALPHABETICAL INDEX
on \WJ\J
INTRODUCTORY REFERENCE MATERIAL
CHAPTERS (Subject Indexes)

s itk
Q@’ INDEXES AND TEXT FRAMES |

Tazonomy 7.1.6.7 Compilation
RM 7.Function Description
717‘:?'322:::"‘"3"0« Translaing a computer progrom

expressed in ..

712 Formaring Cross References

Life Cycle Phases

. Tt .re!' |"I’umc . e ..l
1067 —= for Efement ?w's o
7.1.6.7 T
*

L]
(iuidclmul_ Relcvcncr}

| Completeness
LT

F-14

P ltane

@ EXAMPLE COMPILER TEST CAPABILITIES
CHECKLIST (PAGE 1 OF 2)

S.11 ARTEWG RUNTIME ENVIRONMENT TAXONOMY

Purpose. Describes the basic elements of Ada runtime enviconments and provides a
common vocabulary. The following excerpi 1s 1aken from the introduction to the Tax-
onomy section. Il a runtime environment for an Ada program is composed of a set of
data structwres. a set of conventions for the execulable code. and a collection ol
predetined routines, then the question arises: what are examples of these elements,
and moreover, what is the complete set rom which such elements are taken when a
particular runtime enviconment is built?...t should be noted that the dividing ine be-
tween the predefined runtime support library on one hand. and the conventions and
data structures of @ compiler on the other hand, is not always obvious. One Ada im-
plementation may use a predetined routine to implement a particular language feature,
while another implemenlation may realize the same feature through conventions for the
executable code. ... This laxonomy concerns itsell prmarily with those aspects of the
runtime execution architectwre which are embodied as routines in the runtime lbrary. it
does not freat issues of code and data conventions, nof issues refated to particular
hardware funclionahties. in any great depth.”

[@AM: Runtime Environment 7 2.3.5. @M. Power 6.4.21|

Primary Relerences:
[ARTEWG 1988] A Framework lor Describing Ada Runtime Environments.” Pro-
posed by Ada Runtime Environment Working Group (SIGAda), Ada Letters. Volume
VM. Number 3, May/June 1988, pp. 51-68

Vendors/Agents: (ARTEWG)

Method: Capabilities checkis!
Inputs: Capabikty checklisi {see Table 5 11-1)and runtime environment
documenlation.
Process. Check off capabilihes demonsirated by the runtime environment of dis-
cussed in the documentation
Outputs A hist ol capabiiies performed by the runtime environment.

LB ELNA

EXAMPLE COMPILER TEST CAPABILITIES
CHECKLIST (rA3E 2 OF 2)

TABLE 5.11-1
RUNTIME ENVIRONMENT TAXONOMY

FEATURE FOUND

Runtime Execution Model
Dynamic Memory Management
Processor Management
interrupt Management

Time Management

Exception Management
Rendezvous Management
Task Activation

Task Termination

VO Management

Commonly Called Code Sequences
Target Housekeeping Functions

T nsoe

EXAMPLE COMPILER TEST SUITE SUMMARY
(PAGE 1 OF 3)

§.3 Ads COMPILER EVALUATION CAPABILITY (ACEC)

Purpose: The purpote of this test suie 1 best ststed by the following quote teken
from the introduction i the ACEC Reader’s Guwie -~ The ACEC ... consists of 8 portabie test
suile end suppor! tools It contans test problems dosige to the twme
ond 3izé ol a sysiematically constructad set of Ada exampies The support lools 2333l the
ACEC user in axecuting tho tasl swie and analyzing the rasulis obtaned ° The scope of caver-
sge provided by the 185! suie is shown by the fallowing excerpls from the ACEC classiication
taxonomy:

8. Execution Time Ef!

A. Lenguege Festwe Elficiency

. Requwred (referenced by LRM seciion)

[Dependent (relerenced by LAM section)
[} anabutes (LAM Appendir A)
[] record teprasentation clsuses
3 nterrupts
L] languagn nteriace
L uncheckad programmmng

2. implementation Defined
C. Optumzations

t Ciassical

2 Eftects of Pragmas

3. Sisic Diaboration

L4 aggregates
(4 tasks

4 Language Specilic
. Habermann-Nass: transtormanon for 1asking
L] dolay staterment optrmzation

O Perfirmanca tinder | oad

1 Task Loading
. task crastion
L] task fe¢minabion
[task aborhon
[ning Philosophars Problem
® sk SIATVALON
. tash dniny

Levels ot Nesting
. slate
. tyn,

T-11en2

[
(@’ EXAMPLE COMPILER TEST SUITE SUMMARY

5.4 PIWG BENCHMARK TESTS

Purpose: identification of performance characleristics of Ada compliers. The tests
examine the performance of the compier ilself in lerms of compilation speed. as well
as the quaity of the generated code for both processing and siorage eflectiveness.
The test suite measwes performance for both isolated language features and com-
posites or mixes of language fealwres (using the Whetstone and Dhrysione lests).

{@: Compilation 7.1.6.7, @RM: Processing Eftectiveness 6.4.22;
@AM. Storage Electiveness 6.4.31)

Primary References:
HosOS: Urrestricted
Vendors/Agents: [PIWG)

Method:
Automated lest suite.
Inputs: PIWG sowce code. Ada compiler and runtime system, and host (and tar-
get) computer
Process:
1. Obtain the latest PIWG tesis
2. Compile and run tests according to the documentation.
Quitputs: Reports on the outcome of each test run

F-16

1 68

@ GUIDEBOOK ORGANIZATION

1 introduction

2. Structure and Use of the Guidebook Early

3. Integration of E&V Technology Chapters
4 Synopses

5. Complistion System Assessors

6. Target Code Generation Alds and Analysis Assessors
7. Test System Assessors

8. ToolHost interface Assessors

9. Requirements/Design Support Assessors

10. Configuration Management Support Assessors Formal
11. Distributed System Development and Runtime Support Assessors Chapters
12. Distributed APSE Assessors
13. “Whole APSE" Assgessors
14. Adaption Assessors

89. Other Assessors J

[BRIAN]

@ CHECKLISTS IN THE GUIDEBOOK

Compilation Capabiiities Checklist Real-Time Analysis Capabilities

Program Library Management Capabilities Checkiist | Testing Capabilities Checklist

Runtime Environment Taxonomy Configuration Management Capabilities Checkiist
Assembiing Capabilities Checklist Text Editing Capabilities Checkiist
Linking/A.oading Capabiiities Checkiist Database Management Capabilities Checklist
Import/Export Capabiities Checklist Electronic Mail Capabiities Checkiist

Emulation Capabifities Checkiist Requirements Prototyping Capabilities Checklist
Debugging Capabifities Checklist Performance Monitor Capabikities Checklist
Timing Analysis Capabilities Checklist Simulation and Modeling Capabifities Checkiist
Tuning analysis Capabiiities Checklist File Management Capabilities Checkdist

F-17

LINTRRL)

lﬁo?g EXAMPLE CHECKLIST ASSESSOR
%’ (PAGE 1 OF 3)

5.8 COMPILATION CHECKLIST

Purpose: EvamllonAol the power of compilation by developing a list ol functional capabiiities
{@RM:. Compilation 7.1.6.7. @RM: Power 6.4.2]

Primary Reference:

|@E&V Schema 1987: B..

Classification Schema/E&V Taxonomy Checklists: 4.4)
Vendors/Agents: {E&V Team]

Method: Capabilities checkhst

inpuls: Capability chechiist {see Table 5.8-1) and compiler documentation.
Process: Check olf capabilities demonstrated during compiler runs or discussed in the documentation.

Outputs: A list of capabilities provided by the compiler

11w

EXAMPLE CHECKLIST ASSESSOR
(PAGE 2 OF 3)

TABLE 5.8-1
COMPILATION CAPABILITIES CHECKLIST

FEATURE FOUND

Conditional Compilation

Debug Information Generation
Enable/Disable Listing

Errors Only Listing

Emor identification

Sel Detfault Direciory For Source
Set Listing Width And Height
Specity Ditterent Program Libeary
Specity Main Program

Disable Use Of SYSTEM Library
Suppress Al Run-Time Checks
Comgpile Multiple Files

Language Sensilive Editor Support
Specity Error Limit

Enable/Disable An Error Category
Specity Optimization Parameters
Syntax Only Checking

Symbol Table

Vanable SevUse Indications (Cross-Relerence)
Obyect Code Listing

F-18

T-10581

EXAMPLE CHECKLIST ASSESSOR
(PAGE 3 OF 3) (Cont.)

TABLE 5.8-1
COMP;! ATION CAPABILITIES CHECKLIST (Cont.)

FEATURE FOUND

Object Attiribute Map
Code Statistics
Unidentified Compller Options (Pragmas)
Uncontrolled Dynamic Storage
Elsboration Control
Inline Expansion of Subprograms
interface With Other Languages
Specity Memory Size
Pack Data Representations in Memory
Priority Control of Concurrent Tasks
Shared Variables
Specily Storage Unit
Specity Alternalive System Characteristics
Machine Code Mapping
Machine Code Insertions
Cross Compilation

Error Reporting

Exceptions List
Identity Target Dependencies

T 16082

THE “MODEL PROJECT/STRUCTURED EXPERIMENT”
APPROACH TO WHOLE-APSE EVALUATION
e Create model project — code and 2167A documents

e Build “Scenarios” around, for example

Requirements changes
Test exercises

Version control

Transitions between phases

e Evaluate APSE from whole-team/whole-project perspectl\ie

e Extend/add scenarios to address almost any phase/activity
of interest

F-19

E&V TECHNOLOGY MATRIX o
Assessment Techniques

Evaluation Validation
AssessmentSubjects | £°| 5 | 52 (845| g | ¢
Compilation Systems 10 (4
Target Code Generation Aids, etc. | @
Test Systems D)
TooWHost interfaces O @) O
Requirements/Design Tools O)
CM Support Tools (])
Distributed System Dev. Tools O
Distributed APSES O -
Whole APSEs D O 0
Adaptation Features (.
Others ™
ALYl
() OVERVIEW

e E&V Task: Background

o E&V Team

Objectives
Why Evaluate
Compliers?
Contents
Application to
the Acquisition
Process

e E&V Reference System

mp ¢ Ada Compiler Evaluation Capability (ACEC)

e CAIS Implementation Validation Capability (CIVC)

e Conclusions

F-20

@ ACEC OBJECTIVES

1. COMPARE THE PERFORMANCE OF SEVERAL Ada COMPILER
SYSTEMS

2. ISOLATE THE STRONG / WEAK POINTS OF A SPECIFIC
SYSTEM

3. DETERMINE WHAT SIGNIFICANT CHANGES WERE MADE
BETWEEN RELEASES OF A SPECIFIC COMPILER

4. PREDICT THE PERFORMANCE OF DIFFERING Ada
DESIGN APPROACHES

@ WHY EVALUATE COMPILERS ?
(ISN'T VALIDATION ENOUGH ?7)

1. Ada COMPILER VALIDATION ALONE DOES NOT MEASURE
COMPILER QUALITY

2. APPLICATION DESIGNERS NEED AN ESTIMATE OF A
COMPILERS PERFORMANCE BEFORE DEVELOPMENT

3. SELECTION OF AN INADEQUATE Ada COMPILER CAN
LEAD TO THE FOLLOWING:

- COST OVERRUNS
- REDUCED PROGRAMMERS PRODUCTIVITY
- SCHEDULE DELAYS

F-21

@ ACEC APPROACH

THE ACEC MEASURES THE FOLLOWING TEST ATTRIBUTES:

1. COMPILE TIME EFFICIENCY
2. EXECUTION TIME EFFICIENCY
- MULTIPLE CATEGORIES
3. CODE SIZE EFFICIENCY
- CODE EXPANSION SIZE
- RUN TIME SYSTEM SIZE

ALL DATA PRODUCED IS USED AS INPUT TO THE MEDIAN
PROGRAM TO OBTAIN A STATISTICAL SUMMARY OF THE DATA

=S ACEC USERS
323 (WHO CAN BENEFIT)

e DoD SYSTEM PROGRAM OFFICES
o Ada COMPILER VENDORS
o Ada PROGRAMMERS

o SOFTWARE DEVELOPMENT MANAGERS

F-22

ACEC: CONTENTS

o Suite of 1076 tests
e Support and analysis tools

e User Documentation

EXECUTION TESTS
CLASSIFICATION

1. INDIVIDUAL LANGUGAGE FEATURES
- REQUIRED
- IMPLEMENTATION DEPENDENT

2. OPTIMIZATIONS

3. PERFORMANCE UNDER LOAD

4. DESIGN TRADE OFF'S

9. OPERATING SYSTEM EFFICIENCY

6. APPLICATION PROFILES
- CLASSICAL
- Ada IN PRACTICE
- IDEAL Ada

F-23

ACEC TESTING AREAS
(OF MISSION CRITICAL SIGNIFICANCE)

* MEMORY MANAGEMENT / STORAGE RECLAIMATION
* INTERRUPT HANDLING

* TASK PERFORMANCE

* RUN TIME CHECKING

 EXECEPTION HANDLING / PROPAGATION

* BIT MANIPULATION

* FLOATING POINT OPERATIONS

-
@’ APPLICATION PROFILE TESTS

* DATA ENCRYPTION ALGORITHMS

* KALMAN FILTER ALGORITHM

* EW RECOGNITION AND TRACKING ALGORITHM
o E-3A SIMULATION

* ERROR CORRECTING CODE

® IN-FLIGHT PERFORMANCE MONITOR SYSTEM
* AL DATABASE APPLICATION

F-24

MEDIAN |
ACEC OUTPUT TOOL

o MATRIX OF TIMING MEASUREMENTS
- SYSTEM VS PROBLEM

e HISTOGRAM OF RESIDUAL VALUES
- RELATIVE SYSTEM PERFORMANCE
- DENOTES DEGREE OF OPTIMIZATION

o SUMMARY OF SYSTEM PERFORMANCE
e SUMMARY OF PROBLEM DIFFICULTY
o SUMMARY OF STATISTICAL DATA

9 MAY 1988 09:01:36

TEST PROBLER | {

PROBLEY
BAME 1 A 2 Cc D FACTIN
SINVLATE KMPROTO

1 1.10 ¥0_DATA 0.06 0.91 | 783 .06
SINULATE.UNRAY | 0.94 N0.DATA 0.79 1.06 1 3988.03
SINULATE QNPITCH

i 0.90 %0_DATA 0.91 1.10 | 620.33
SINULATE BMBATI 1.01 NO_DATA 0.93 0.9 ¢ 31T .60
SINULATE ENRPH{ 1.28 NO_DATA 0.80 0.6 | 336,54
SINULATE ACVFRDET

| 0.06 ¥0.DATA 0.95 1.08 1 1201 21
FORWARD (EULERI | 0.91 WO, DATA 0.66 1.09 | 2492 ¢
FORVARD TVLEA2Y 0.93 NO_DATA 0.66 1.08 | 1309 16
ALED_SOLONON Of 1.13 AUN_TINE 1.00 CHP.TINE | :0:1d 3%
AZED . SOLONON 1 | 1.00 AUN_TINE 1.24 CHP.TINE | 388 23
AZED, SOLONON .21 1.00 AUN_TINE 1.18 CNP.TINE) ITIR 2]
AZED,SOLORON. 3| 1.00 M TINE 1.17 CHP.TINE | 1423.20
RZED, SOLOMON. 41 0.53 AUR_TINE 1.00 CHP.TINE | 1170 72
AECLAIN,_GLOBAL _NEAP CONSTRAINED)

! 1.07 0.94 ©.81 DEPENDENT 5615
AECLAIN,_CLOBAL NEAP UNCONSTRAINED

1 110 1.16 0.91 DEPENDENT | 36, 38
REC.AIN_COLLECTION_CONSTRAINED

! AU TINE 2.99¢ UNRELIABLE DEPENDENT | 364 92
RECLAIN_COLLECTION UNCONSTRAINED

I AUN.TIME 1.43 1.00 DEPENDENT | " 83
SYSTEM FACTORS) 1.00 1.07 0.90 1.2)

F-25

16 mAT 3040 13140102

trvazes
114l i
Sunsta 189 sLoT N18306RAR

bl fmrannamananannmnnasaan

sescscsvesctnne
e

wvevwverewvevvvemvetod

PRSP0 OHGOSENEBD®

9 MAY 1988 09:01:36

| | TOTAL
SYSTER UNDER | vaLID WULL UNRELIABLE I wmor
87 1 TINES TINES TIiNES oTHER | TESTS

780 1
404
798
[]
366

224 1 1}
38 €3¢
an []

[463
29 (11

107¢
1076
107¢
1078
1076

modto»
OB D -

F-26

o
&

ACEC DOCUMENTATION

o ACEC USER'S GUIDE
o ACEC READER’S GUIDE
o ACEC VERSION DESCRIPTION DOCUMENT

2 ACEC PHASE NI
@ ADDITIONAL AREAS

1. ADDITIONAL EXECUTION TIME PERFORMANCE TESTS
2. DIAGNOSTIC MESSAGE EVALUATION

3. SINGLE SYSTEM REPORT

4. LIBRARY ROBUSTNESS EVALUATION

5. SYMBOLIC DEBUGGER PERFORMANCE EVALUATION

F-27

A ACEC DISTRIBUTION
(HOW TO GET A COPY)

(&

THE ACEC IS DISTRIBUTED BY:

'DATA AND ANALYSIS CENTER FOR SOFTWARE (DACS)
RADC / COEE

BUILDING 101

GRIFFISS AFB, NY 13441-5700

ATTN: DOCUMENT ORDERING

(315) 336-0937

ADA COMPILER VENDORS USING ACEC
FOR QUALITY ANALYSIS

TOTAL # OF VALIDATED ROOT COMPILERS = 210
OF VALIDATED

-VENDOR__ - COMPILERS _ h_
VERDIX 47 2%
TELESOFT 39 19%
R&R SOFTWARE " 5%
ALYSYS 8 4%
MERIDIAN 8 4%
RATIONAL 6 3%
GOULD 6 3%
IRVINE 4 2%
o 3 1%
0DC! 3 1%
INTERMETRICS 3 1%
DIGITAL EQUIPMENT 3 1%
CONCURRENT 3 1%
MiPS v _5%

1L} 63%

F-28

ACEC USERS

USER _ APPLICATION / FUNCTION_

AF | McDONNEL ACFT €0 ADVANCED TACTICAL FIGHTER

AF | MAC F-15E AND F-15 MSIP COMPILER SELECTION

AF | GENERAL ELECT FLUGHT CONTROLLER COMPILER SELECTION

AF | LEAR ADVANCED INTEGRATED CONTROLS AND AVIONICS FOR AIR
SUPERIORITY (ICAAS)

WROC | AMAF-3 USABILTY OF ADA FOR EMBEDDED SYSTEMS

ARMY INFORMATION SYSTEMS SOFTWARE CENTER COMPILER
SELECTION

ARMY | SY TECH. STRATEGIC DEFENSE COMMAND HGH ENDOATMOSPHERIC
DEFENSE INTERCEPTOR, XTV PRASE

NAVY COUNTER MEASURES EVALUATOR SYSTEM COMPRER
SELECTION

NAVY | SYSCON IVBV OF THE ALS /N

MARINES MARINE CORE TACTICAL SYSTEMS SUPPORT COMPRER
SELECTION

00D | NATO | BENDIX MARK XV IFF COMPILER SELECTION

NASA | LOCKHEED SPACE STATION FREEDOM COMPILER SELECTION

NASA | ROCKWELL PERFORM REAL - TIME PERFORMANCE ASSESSMENT OF ADA

ML 4y
CY
N APPLICATION OF ACEC TECHNOLOGY
Y

‘““THE DIRECTIVE”’

“HOUSE APPROPRIATIONS COMMITTEE REPORT (100-681),
JUNE 10, 1988 DIRECTS Ada JOINT PROGRAM OFFICE
TO “INCLUDE COMPILER EFFICIENCY IN VALIDATING
PROCEDURES”

F-29

‘6’ APPLICATION OF ACEC TECHNOLOGY
(>

ML § 3

““THE RATIONALE"”’

“Ada HAS SOME TECHNICAL LIMITATIONS IN REALTIME AND
DISTRIBUTED ENVIRONMENTS. PROJECT MANAGERS WORKING
IN THESE ENVIRONMENTS WOULD BENEFIT FROM FINDINGS
IN THESE AREAS.”

%3’ APPLICATION OF ACEC TECHNOLOGY
(>

ML, 3

““THE REPLY”’

“ALTHOUGH BOTH EVALUATION AND VALIDATION ARE NECESSARY
SEPARATION IS REQUIRED DUE TO THE NATURE OF THE TWO PROCESSES”

- VALIDATION TEST SUITE IS APPLICATION INDEPENDENT
- EVALUATION 1S SUBJECTIVE AND APPLICATION SPECIFIC

“AIPO WILL ESTABLISH PROCEDURES AND GUIDELINES FOR FORMAL
EVALUATION OF COMPILES AT EXISTING Ada VALIDATION FACILITIES
BY MID-1989"

F-30

0
%2} APPLICATION OF ACEC TECHNOLOGY

““THE PLAN”’

Ada COMPILER EVALUATION PROCEDURES AND GUIDELINES

o DEFINES COMMONLY USED FORMAL EVALUATION TERMS

 QUTLINES ORGANIZATIONAL STRUCTURE FOR MANAGEMENT,
COORDINATION AND DIRECTION OF THE FORMAL EVALUATION PROCESS

* LISTS STEPS IN THE PROCESS
* PREVIOUS GUIDANCE TO DoD PROGRAM MANAGERS ON THE

APPLICATION OF PERFORMANCE DATA IN THE ACQUISITION,
USE AND MAINTENANCE OF Ada IMPLEMENTATIONS

QUALITY TESTING SERVICE (QTS) - 1

MES 10954

PURPOSE: “THIS SERVICE PROVIDES FOR THE COLLECTION OF COMPILER
PERFORMANCE AND USABILITY DATA FOR ANALYSIS BY USERS AND
PROGRAM MANAGERS IN EVALUATING Ada COMPILERS AND THE
IMPLEMENTATION OF SPECIFIC LANGUAGE FEATURES.” -

PTS, (VERSION 1)

DOCUMENT DEFINES THE PROCEDURES FOR EFFECTIVE USE OF THE
EVALUATION TECHNOLOGY BY THE DoD

© PAST—=INITIAL DRAFT REVIEWED BY THE E&YV TEAM AND OTHERS
© PRESENT—»VERSION 1.0 IN REVIEW BY SELECTED EXPERTS

* FUTURE — APPROVAL OF PROCEDURES WILL RESULT IN
AVAILABILITY OF STANDARDIZED EVALUATION CAPABILITY

F-31

QUALITY TESTING SERVICE (QTS) - 2

Ada COMPILER QTS PROCEDURES
(DRAFT)

e INTRODUCTION

o GLOSSARY

e ORGANIZATION AND RESPONSIBILITIES

o (TS TEST SET

o TESTING PROCEDURES

o PERFORMANCE AND USABILITY DATABASE

QUALITY TESTING SERVICE (QTS) - 3

QUESTIONS ABOUT THE QUALITY TESTING SERVICE
(TS):

e HOW VERSATILE IS THE ACEC ?

e WHO WILL OPERATE THE 078 ?

o HOW MANY INSTANCES OF THE QTS FACILITY WILL BE
CREATED ?

o WHAT LEVEL OF EXPERTISE IS REQUIRED TO OPERATE THE
ars ?

e WHO WILL PAY FOR THE QTS ?

F-32

MCy oy

QUALITY TESTING SERVICE (QTS) - 4

QUESTIONS ABOUT THE QUALITY TESTING SERVICE
(aTs):

© WHAT IS THE BENEFIT TO THE GOVERNMENT ?
* WHAT IS THE ADVANTAGE TO THE VENDOR ?

* SHOULD THE VENDOR BE ALLOWED TO OMIT SOME TESTS ?
- DOES THIS INVALIDATE THE RESULT ?
- DOES IT PRODUCE MORE USEFUL INFORMATION ?

D
%2’ APPLICATION OF ACEC TECHNOLOGY

“THE DREAM”’

* AEF's EVALUATE Ada COMPILATION SYSTEMS (ACS) AND
STORE DATA

e DoD PROGRAM OFFICES USE AEF DATA FOR ACQUISITION
OF ACS's

- SPECIFY ACS REQUIREMENTS

- SPECIFY USE OF ACEC IN CONTRACTOR'S ACS
SELECTION PROCESS

F-33

WL 40 A

l@ﬁ APPLICATION OF ACEC TECHNOLOGY

Y

““THE GUIDANCE’’

WHEN SELECTING AN ACS THE FOLLOWING SHOULD
BE CONSIDERED:

 VALIDATION STATUS

* CODE SIZE

o EXECUTION SPEED

o CoST

o COMPILATION SPEED

e EFFICIENCY OF Ada LIBRARY MANAGEMENT SYSTEM

* QUALITY OF DIAGNOSTICS INFORMATION

e AVAILABILITY / QUALITY OF DEBUGGERS AND OTHER SUPPORT TOOLS

Q@’ APPLICATION OF ACEC TECHNOLOGY
(>

““THE GUIDANCE (CONT’D)
STEPS FOR MAKING THE CHOICE

® INITIALLY USE “HIGH LEVEL" CHARACTERISTICS

o DETERMINE RELATIVE IMPORTANCE OF “LOW LEVEL"
CHARACTERISTICS

e OBTAIN ACEC RESULTS FOR ALL CANDIDATES

o APPLY THE ACEC TO THE MOST PROMISING CANDIDATE
CONFIGURATIONS

o |F LANGUAGE FEATURES ARE HEAVILY WEIGHTED USE
APPENDIX V OF ACEC VDD. APPLY MEDIAN TO RESULTS

F-34

OVERVIEW

e E&V Task: Background
e E&V Team

o E&V Reference System

@ Whatis CAIS

e Ada Compiler Evaluation Capability (ACEC) / e Who is using

[x:\:;l is CAIS

) ¢ CAIS Implementation Validation Capability o Anscation 1o

the Acquisition
Process

e Conclusions

(& WHAT IS CAIS
&

C - COMMON

A - APSE (Ada PROGRAMMING SUPPORT ENVIRONMENT)
| - INTERFACE

S - SET

o CAIS IS A DOCUMENT WHICH:
o DEFINES Ada PACKAGE SPECIFICATIONS FOR
INTERFACES TO OPERATING SYSTEM SERVICES
THAT SIGNIFICANTLY IMPACT TOOL
TRANSPORTABILITY

F-35

@ CAIS IMPLEMENTATION VALIDATION CAPABILITY (CIVC)

W, inse

TECHNICAL OBJECTIVES

o DEVELOP A LIMITED VALIDATION TEST SUITE FOR THE COMMON ADA
PROGRAMMING SUPPORT ENVIRONMENT (APSE) INTERFACE SUITE (CAIS)

o ENABLE DOD 70 TEST CONFORMANCE OF APSE's TO CAIS
o ENSURE TRANSPORTABILITY OF SOFTWARE TOOLS
o ENSURE INTEROPERABILITY OF APSE DATA BASES

APPROACHES

o INITIAL CIVC BASED UPON DOD-STD-1838
e FOLLOW-ON VERSION TO EVOLVE TO DOD-STD-1838A

o WORK CLOSELY WITH CAIS IMPLEMENTATION GROUPS
o INCORPORATE DEVELOPMENTS OF OTHER ORGANIZATION INTO CIVC

@ APSE DEFINITION

F-36

>4y,

@ WHO IS USING CAIS

NATO SPECIAL APSE DEVELOPMENT

e 10 COUNTRIES JOINTLY DEVELOPING
o APSE TOOLS TO BE CAIS-A BASED
e U.S. TO DEVELOP CAIS-A IMPLEMENTATION

o U.S. RESPONSIBLE FOR DEVELOPING “LIMITED"
VALIDATION SUITE

118397

APPLICATION TO THE ACQUISITION PROCESS

e No current DoD mandate to use CAIS
e Current environment research emphasizing CAIS

e CIVC/CAIS implementations analogous to ACVC/Ada
compilers

F-37

OVERVIEW

e E&V Task: Background

o E&V Team

e E&V Reference System

o Ada Compiler Evaluation Capability (ACEC)

e CAIS implementation Validation Capability (CIVC)

#) ¢ Conclusions

I 3N

CONCLUSIONS

The software acquisition process is changing...

e “Word of Mouth” assessment unacceptable

e Cost of modem systems demands application
of E&V technology of APSEs

F-38

COMPILER EVALUATION
s YTECHNOLOGY PANEL

TRI-Ada CONFERENCE
PITTSBURGH, PA
25 OCTOBER 1989

PRESENTER: RAYMOND SZYMANSKI

E&V ACTIVITY AND TASK

EVALUATION AND VALIDATION OF Ada PROGRAMMING SUPPORT
ENVIRONMENTS (a.k.a. E&V TASK)

SPONSOR—=Ada JOINT PROGRAM OFFICE (AJPO)
CHARTER—DEVELOP THE TECHNOLOGY TO ASSESS APSE COMPONENTS
PROGRAM MANAGER —=RAYMOND SZYMANSKI
PRODUCTS — Ada COMPILER EVALUATION CAPABILITY

CAIS IMPLEMENTATION VALIDATION CAPABILITY

E&V REFERENCE SYSTEM
E&V TASK ANNUAL REPORTS (VOL I-IV)

F-39

IN THE BEGINNING ...

OCT 1983 — DoD RECOGNIZES THE NEED FOR APSE EVALUATION
AND INITIATES THE E&V TASKS

1985 — E&V TASK INITIATIVES EVALUATION TECHNOLOGY
CONTRACTUAL ACTIVITIES

FEB 1987 —~ACEC CONTRACT AWARD

JUNE 1988 —=HAC (DIRECTED AIPO TO...)
AUG 1988 —=ACEC, VERSION 1.0 RELEASED

OCTOBER 1989—-DRAFT VERSION OF THE QUALITY TESTING
SERVICE (QTS) PROCEDURES DOCUMENT DISTRIBUTED TO SELECTED
REVIEWERS

DEC 1989 —=(PLANNED) ACEC, VERSION 2.0 RELEASED

ACEC - STATUS

VERSION 1.0—— INITIAL RELEASE DATE - AUG 1988

CONTENTS - 1000+ TESTS THAT MEASURE COMPILER
PERFORMANCE CHARACTERISTICS

VERSION 2.0 — INITIAL RELEASE DATE - DEC 1989

CONTENTS - LIBRARY ROBUSTNESS, DEBUGGER EVALUATION,
DIAGNOSTIC MESSAGE EVALUATION, ADDITIONAL PERFORMANCE TESTS

ACOUISITION — DATA ANALYSIS CENTER (DACS)
PHONE # (315) 336-0937
(REQUEST THE “ACEC INFORMATION PACKET")

DEVELOPER —— BOEING MILITARY AIRPLANE COMPANY
WICHITA, KANSAS

F-40

QUALITY TESTING SERVICE (QTS) - 1

MCS 19454

PURPOSE: “THIS SERVICE PROVIDES FOR THE COLLECTION OF COMPILER
PERFORMANCE AND USABILITY DATA FOR ANALYSIS BY USERS AND
PROGRAM MANAGERS IN EVALUATING Ada COMPILERS AND THE
IMPLEMENTATION OF SPECIFIC LANGUAGE FEATURES.” -

PTS, (VERSION 1)

DOCUMENT DEFINES THE PROCEDURES FOR EFFECTIVE USE OF THE
EVALUATION TECHNOLOGY BY THE DoD

o PAST—=-INITIAL DRAFT REVIEWED BY THE E&V TEAM AND OTHERS
o PRESENT—VERSION 1.0 IN REVIEW BY SELECTED EXPERTS

o FUTURE —=APPROVAL OF PROCEDURES WILL RESULT IN
AVAILABILITY OF STANDARDIZED EVALUATION CAPABILITY

QUALITY TESTING SERVICE (QTS) - 2

NCS 189170

Ada COMPILER QTS PROCEDURES
(DRAFT)

o INTRODUCTION

o GLOSSARY

o ORGANIZATION AND RESPONSIBILITIES

o QTS TEST SET

o TESTING PROCEDURES

o PERFORMANCE AND USABILITY DATABASE

F-41

QUALITY TESTING SERVICE (QTS) - 3

QUESTIONS ABOUT THE QUALITY TESTING SERVICE
(ats);

o HOW VERSATILE IS THE ACEC ?

e WHO WILL OPERATE THE QTS ?

* HOW MANY INSTANCES OF THE QTS FACILITY WILL BE
CREATED ?

o (VIITI;AI LEVEL OF EXPERTISE IS REQUIRED TO OPERATE THE

o WHO WILL PAY FOR THE QTS ?

QUALITY TESTING SERVICE (QTS) - 4

s 1995

QUESTIONS ABOUT THE QUALITY TESTING SERVICE
(aTs):

© WHAT IS THE BENEFIT TO THE GOVERNMENT ?

© WHAT IS THE ADVANTAGE TO THE VENDOR ?

* SHOULD THE VENDOR BE ALLOWED TO OMIT SOME TESTS ?

- DOES THIS INVALIDATE THE RESULT ?
- DOES IT PRODUCE MORE USEFUL INFORMATION ?

F-42

NS 10-9-210

QUALITY TESTING SERVICE (QTS) - 5

CONCLUSION—=FOR AVAILABILITY REGARDING THE PTS
DOCUMENT, CONTACT.

DALE LANGE
ASD / SCEL
WPAFB, OHI0 45433

QUESTIONS FOR THE PANEL

ALL QUESTIONS SHOULD BE ADDRESSED IN THE CONTEXT
OF “BARE MACHINES” —

* WHERE ARE THE “QUALITY" COMPILERS ?
* WHAT DO YOU THINK OF THE ACEC?

e WHAT ARE THE BENEFITS OF “FORMAL"
COMPILER EVALUATION ?

F-43

Text of presentation delivered by Raymond Szymanski, E&V Project Manager, at
the Tri-Ada Conference, Compiler Evaluation Technology Panel, 25 October 1989.

(TITLE SLIDE, p. F-39)

Good Afternoon,

I’'m Raymond Szymanski from the Wright Research and Development Center at
Wright-Patterson Air Force Base in Dayton, Ohio. The projects that will be
discussed here this afternoon include the Evaluation and Validation Task, the
Ada Compiler Evaluation Capability, a.k.a. the ACEC, and the Ada Compiler
Quality Testing Service, a.k.a. the QTS.

(E&V ACTIVITY AND TASK, p. F-39)

In October of 1983 the United States Department of Defense recognized the need
for (APSE) evaluation technology by initiating the APSE Evaluation and
Validation Task. This task is sponsored by the Ada Joint Program Office. The
purpose of this task is to provide a DoD focal point for addressing DoD E&V
technology needs. The E&V Task is responsible for 1) identifying and defining
specific E&V technology requirements, 2) developing selected elements of the
required technology, 3) collecting information on E&V technology, and
4) making E&V technology developments and information available to Government
agencies, industry, and academia. The Program Manager of the E& Task since
1985 is yours truly. Some of our current efforts include the ACEC, the CAIS
Implementation Validation Capability, the E&V Reference System, and the E&V
Team Public Report. For additional information on these items please obtain
the E&V flyers that are available throughout the conference.

(IN THE BEGINNING, p. F-40)

The purpose of this foil is to provide some historical information which may
help explain the presence of this panel today.

So, in 1983 the E&V Task is established.

In 1985, the first of three major contractual efforts was initiated. This
first effort, which was awarded to The Analytic Sciences Corporation, has
produced the E&V Reference System. This system consists of twe coordinated
documents, the E&V Reference Manual and the E&V Guidebook, for which
Version 2.0 will soon be available.

In February of 1987, a contract was awarded to Boeing Military Airplane
Corporation to produce a suite of Ada compiler performance tests and analysis
support software.

In June of 1988, the House Appropriations Committee, the HAC, via HAC Report

100-681, directed the AJPO to "include compiler efficiency in validating
procedures." The AJPO’s response was that validation of compilers and

F-44

evaluation of compilers were two tasks which should remain separate and that a
test suite, independent of the validation suite, and known as the ACEC, was
under development. They went on further to say that they, the AJPO, would
develop a plan which would address the HAC's concern over compiler evaluation.

That plan is known today as the "Ada Compiler Quality Testing Service
Procedures," the QTS Procedures.

This document was recently mailed to a list of professionals in the Ada
community for review and comment. This list included, but was not limited to
selected members of the following groups and organizations: this panel, the
Ada Joint Users Group, the SEI, the STARS Program, major DoD program offices,
the E&V Team, and over three dozen vendors of Ada compilers. Comments for
this document are due on 17 November. A review and analysis of these comments
will provide a basis for updating the draft and will result in an approved
plan in the near future.

The final bullet on this slide announces the fact that ACEC Version 2.0 is
scheduled to be accepted by the Government in December of this year and will
be available for distribution shortly thereafter.

If you have not already guessed by now, the ACEC is scheduled to play a major
role in the Ada Compiler Quality Testing Service.

In summary, a review of the events on this chart and their dates should make
it obvious that the need for the ACEC was recognized long before the June 1988
HAC report.

(ACEC STATUS, p. F-40)
By now I'm sure many of you are asking "Just what is this ACEC?" Good.

The ACEC consists of the ACEC software product and three supporting documents;
the ACEC User’s Guide, the ACEC Reader’s Guide, and the ACEC Version
Description Document. The ACEC software product consists of both operational
software and support software.

The operational software is a suite of 1,076 performance test programs which
makes it possible to 1) compare the performance of several Ada compiler
implementations, 2) isolate the strong and weak points of a specific system
relative to other systems which have been tested, 3) determine what
significant changes were made between releases of a compilation system, and
4) predict performance of alternate coding styles.

The ACEC tests provide assistance in measuring execution time efficiency, code
size efficiency, and compiler time efficiency.

The support software consists of a set of tools and procedures which assist in
preparing the test suite for compilation, in extracting data from the results

of executing the test suite, and in analyzing the performance measurements
obtained.

F-45

Version 2.0 of the ACEC is scheduled for release in December of this year.
Along with an additional 300 performance tests, Version 2.0 will address
several aspects of an Ada compilation system which usability, the Ada Library

System, the Symbolic Debugger, and the Diagnostic Error Messages generated by
the system will be tested.

The Diagnostic Message Assessor will include a set of erroneous programs which
will trigger a variety of compiler, linker, and runtime error messages and
warnings. The user will evaluate the diagnostic messages according to
instructions included in the ACEC.

The Library System Assessor will consist of a set of programs and a set of
scenarios which the user will perform using the programs. The user will
follow the instructions included with the scenarios to evaluate both the
functional capabilities and the performance of the Ada Library System.

Similarly, the Symbolic Debugger Assessor will include a set of programs, a
set of scenarios describing operations to be performed with the symbolic
debugger, and instructions for evaluating the performance of the debugger.
Both the functional capabilities and the performance impact of the debugger
will be tested.

In addition to the new performance tests and the introduction of usability
tests, Version 2.0 will include a single system analysis tool. This tool will
analyze the test results of one system and produce a report detailing system
behavior.

The ACEC is currently being distributed by the Data Analysis Center for
Software. The phone number is: area code 315, 336-0937. The caller should
request the "ACEC Ordering Information Packet."

(QUALITY TESTING SERVICE --- 1, p. F-41)

In response to the stimulus provided by the June 1988 HAC Report, the AJPO has
developed a draft document titled "Ada Compiler Quality Testing Service
Procedures." The AJPO is currently giving consideration to establishing an
Ada Compiler Performance Testing Service. This service would provide for the
collection of compiler performance and usability data for analysis by users in
evaluating Ada compilers.

The QTS procedures document defines the procedures for effective DoD use of
evaluation technology, such as the ACEC. The initial draft of the document
was reviewed by members of the E& Team and a few other individuals. The
current version is out for review by a considerably larger audience. When
completed and approved, the QTS procedures will result in the availability of
a standardized evaluation capability.

F-46

(QUALITY TESTING SERVICE --- 2, p. F-41)
The current draft of the QTS procedures document contains six major sections.

The obligatory introduction addresses the rationale behind the QTS, the goals
of the QTS, and a concept of operation.

The glossary simply defines the terms used within the document.

The section on organization and responsibilities describes the roles and
responsibilities of the organizations involved in managing, supporting, and
executing the QTS and identifies potential QTS customers.

The QTS Test Set Section discusses the purpose of the test set, the initial
test set composition, the criteria that additional test set components must
meet, configuration management and software maintenance of the test set,
customization of the test set and its availability.

The section on testing procedures covers numerous topical areas. It includes,
but is not limited to, discussions of the following:

The projected testing schedule---from pre-payment for services to completion
of the final report, the customer agreement---and what topics are addressed by
it, pretesting activities, submission of results, what is a test issue?, what
happens at on-site testing?, analysis of testing results---what support the
QTF will provide in analysis, the compiler capability report---its contents
and availability.

The last section addresses the performance and usability database---what it
will contain and who has access to it.

(QUALITY TESTING SERVICE --- 3, p. F-42)

Shortly after accepting the invitation to participate on this panel I was
informed by a reliable source that the topics for the Tri-Ada panels were
selected not only for their potential to inform, but also for their potential
of being highly controversial. To that end the next three foils contain
several questions concerning the ACEC and the Quality Testing Service. The
first two foils contain questions that have evolved during the creation of the
QTS procedures document. The final foil lists those questions posed to each
panelists upon their invitation to participate. Although I'm sure that some
of the panelists will disagree with my responses and thus allow this panel to
fulfill our pre-ordained destiny of controversy, I’ve also included questions
that I do not yet have answers.

Question #1 --- How versatile is the ACEC?

Answer --- Sufficiently versatile to contribute to the objectives of a
Quality Testing Service.

F-47

Question #2

Answer

Question #3

Answer

Question #4

Answer

Question #5

Answer

Question #6

Answer

Who will operate the QTS?

That has not yet been determined. However, several
organizations have expressed interest in becoming quality
testing facilities if and when the AJPO decides to
institute QTFs.

How many instances of the QTS Facility will be created?

That has not yet been determined, although I suspect there
is room for more than one.

What level of expertise is required to operate the QTS?

Various levels of expertise are required depending on the
particular function being performed. The higher levels of
expertise being required in the analysis of test results,
especially the anomalies.

Who will pay for the QTS?

The user of the service.

(QUALITY TESTING SERVICE --- 4, p. F-42)
What is the benefit to the Government?

Save money while fielding compilers that meet our needs.
The QTS will provide valuable information that can be used
to determine which compilers meet our program requirements
and which of those candidates is best suited for the task.
The importance of having the proper compilation system
cannot be overstated when considering the costly
consequences of having the wrong one.

At present there are many Government organizations doing
their own compiler testing, either under contract or in-
house. Each of these organizations has had to pay the
costs of learning how to do successful evaluations and
interpreting the results. With centralized testing the
learning curve costs to the DoD are significantly reduced
and the probability that the task was done correctly is
significantly increased as the experience base grows.

With centralized testing and its centralized database of

compiler quality testing results it is reasonable to expect
that the DoD would perform less compilation system

F-48

Question #7

Answer

Question #8

Answer

evaluations than they would without the database. This is
possible for two reasons. First, there is currently no
reliable method for a Government agency to determine which
compilation sysiems have been evaluated by other Government
agencies or Government contractors. As such, I suspect
that the same compilation systems have been evaluated by
different agencies. A duplication of effort which I
contend is a waste of money and could be avoided via a
central database. The second reason is that once the
database is sufficiently populated it is reasonable to
expect that many users will find information there useful
in identifying candidate compilers that meet their needs.
In this case they have identified testing and have saved a
significant amount of time and money.

What is the advantage to the vendor?

Two part answer. Part one, the ACEC is a tool which can
assist the vendor in improving his product. One prominent
vendor informed me that they use it as a Q/A tool to
measure the performance differences of new releases and
have used it to track down bugs in mature releases.

Part two, if a vendor has the results of his compiler
testing in the database it is possible that a database user
will select his compiler as a candidate based on the
information contained therein. Also, for the purpose of
advertising, the certified testing results will be held in
higher regard by the user/buyer community than those not
double checked by an independent agency.

Should the vendor be allowed to omit some tests?

From the perspective of a buyer I wouldn’t want to allow
test omission because it may remove an important data
point. However, there may be some good technical reasons
for omitting particular tests and in that case it should be
allowed. Talk about you controversy.

(QUALITY TESTING SERVICE --- 5, p. F-43)

For information regarding the performance testing service draft document
please contact the individual listed on this foil.

F-49

(QUESTION FOR THE PANEL, p. F-43)

The following three question are to be answered by all the panelists. I
suspect that those following me will answer them in more detail than I.

Question #1

Answer

Question #2

Answer

Where are the quality compilers?

We at the Avionics Laboratory have some very good ideas
where the quality compilers are since we have been using
the ACEC to test these with. However, we are not inclined
at this to announce our findings to the world. Also, we,
like many other Government organizations doing in-house
evaluations, are not chartered to do this type of work
forever, and there will be much more of this work that
needs to be done. Just another reason why we need a
chartered quality testing service to continue this
important endeavor.

What do you think of the ACEC?

As the E&V Task Program Manager and the current ACEC
Project Manager, my opinion is sure to be looked upon as
slightly biased. So, with your permission, I would like to
mention just a few of the documented uses of the ACEC
instead.

The F-15 System Program Office at Wright-Patterson Air
Force Base is responsible for updating the F-15 Eagle and
the F-15 Multistage Improvement Program On-board Computers
and Operational Flight Programs. As a guide their
contractor used the E&V Reference System for information on
the process of selecting an Ada compiler and used the ACEC
to "provide significant information to allow thorough
evaluation and intelligent compiler selection.”

Another example, the ACEC was used to identify, for a major
compiler vendor, what was causing the code of a new version
to execute slower than code from an older version. Without
the ACEC this anomaly may not have been discovered and
corrected until after the compiler reached the marketplace.

In another example, the ACEC was used at WRDC to discover
that the program library for a particular compilation
system continued to grow even after deleting the contents
after each build, eventually filling a 20 meg disc. When a
directory command was performed after the library was
completely deleted, the disk still acted as if full., It
was determined that the disk contained hidden files from
the compiler.

F-50

Question #3

Answer

Thank you.

The ACEC is currently being used by a NASA contractor to
evaluate cross-compilers for the embedded real-time targets
on the space station "Freedom." A paper given at the
recent AIAA Conference indicates that this work is not yet
completed and therefore I do not have a report card on
their use of the ACEC. The point is that the ACEC is being
used on this effort. In the paper they did say that use
was made of the E&V Reference Manual and E&V Guidebook and
that they were "excellent references."”

What are the benefits of "formal" compiler evaluation?

Formal, as in institutionalized, not as in mathematical.
Aside from the cost benefits to be realized from cradle to
grave on a software project and simply having someone who
knows how to do evaluations when they need to be done,
there is the possibility that the QTS and its test suite
will set a quality target for compiler vendors to strive
for, thus elevating the quality of compilers across the
board.

F-51

Ada Compiler Evaluation Capability

Version 2.0

May 1990

Ada Compiler Evaluation Capability
Overview

- Objective
-~ Approach
~ Contents
- Users

— Future Enhancements

F-52

Ada Compiler Evaluation Capability
Obijectives

—~ Compare the performance of several Ada compilation
systems

- Isolate the strong and weak points of a specific system
- Determine usability characteristics of a specific system

- Determine what significant changes were made between
releases of a specific compiler

-~ Predict the performance of differing Ada design
approaches

Ada Compiler Evaluation Capability
Approach

~ The ACEC measures the following attributes:
~ Code Size Efficiency
- Code Expansion Size
— Run Time System Size
— Execution Time Efficiency

- Compile Time Efficiency

F-53

Ada Compiler Evaluation Capability
Approach (cont)

— The ACEC assists in the assessment of the following:
— Diagnostic Messages
- Clarity
- Accuracy
~ Program Library System
- Functional Capabilities
-~ Symbolic Debugger

- Functional Capabilities

Ada Compiler Evaluation Capability
Contents

- 1400 Performance Tests
- Usability Tests and Scenarios
- Support and Analysis Tools

- User Documentation

F-54

Ada Compiler Evaluation Capability
Performance Tests

- Individual Language Features

-~ Required
- Implementation Dependent

- Optimizations

- Performance Under Load

- Design Trade Offs

- Operating System Efficiency
— Application Profiles

— Classical
— Ada In Practice
— ldeal Ada

Ada Compiler Evaluation Capability
Tests Of Mission Critical Significance

-~ Memory Management / Storage Reclamation
- Interrupt Handling

~ Task Performance

-~ Run Time Checking

- Exception Handling / Propagation

- Bit Manipulation

- Floating Point Operations

F-55

Ada Compiler Evaluation Capability
Assessors

- Sets of Tests and Scenarios to :

- Evaluate clarity and accuracy of system's diagnostic
messages

- Determine wether the functional capabilities of a program
library system are sufficient to accomplish a set of
predefined scenarios

- Determine wether the functional capabilities of a symbolic
debugger are sufficient to accomplish a predefined set of
scenarios

Ada Compiler Evaluation Capability
Analysis and Support Tools

— INCLUDE

~ Adapts programs to particular targets
— FORMAT and Med_Data_Constructor

- Extract and format timing and sizing data
-~ Median

— Compares results of performance tests
- SINGLE SYSTEM ANALYSIS

~ Compares results of related tests from a single system

F-56

Ada Compiler Evaluation Capability
Documentation

— ACEC User's Guide (109 pp)
— How to adapt and execute the test suite
— ACEC Reader's Guide (153 pp)
— Test Suite Organization
— Interpretation of Results
— Version Description Document (295 pp)
— Describes product as contained on distribution tape

- Contains Indexes

Ada Compiler Evaluation Capability
Keyword Indexes

-~ Keyword Indexes Created to Enhance Usability
- Keyword Index 1
- Primary Purpose -- 30 Categories
- List of Qualified Tests
— Lists of Secondary and Incidental Tests
- Language Reference Manual Citations
Example: subprogram.local 6.4

Primary: activationi, firth5, ss8, ...
Secondary: ss641, ss642
Incidental: ss236, ss237, ss365, ...

F-57

Ada Compiler Evaluation Capability
Enhancements

ORGANIZATION-
- RENAMING
- REPACKAGE

ANALYSIS ISSUES

- THE MODEL

- ESTIMATING THE MODEL

- SINGLE NUMBER SUMMARY

AUTOMATION AND INTERFACE

CAPACITY
- COMPILE/LINK TIME CAPACITY LIMITS

- SYSTEMATIC COMPILE SPEED

ADDITIONAL PERFORMANCE TESTS
USER DOCUMENTATION

- MAINTENANCE

F-58

CAIS Implementation Validation Capability

CIVC Version 1.0

January 1990

- Contents
- Users

- Future Enhancements

CAIS Implementation Validation Capability
Overview

===

- Objective
- Approach

F-59

—

CAIS Implementation Validation Capability
Objectives

- Develop a validation suite for implementations of DOD-STD-
1838

CAIS Implementation Validation Capability
Approach

- Partition suite development with another agency
- CIVC to address DOD-STD-1838 Chapter 4

F-60

CAIS Implementation Validation Capability

Contents

- CIVC Test Suite
- CIVC Test Administrator
- CIVC Framework

CAIS Implementation Validation Capability

Test Suite
- Concentrates on DOD-STD-1838 Chapter 4
- 3 Super Classes
- 14 Test Classes
- 253 Test Cases

F-61

CAIS Implementation Validation Capability
CIVC Test Administrator

- Provides CIVC User Interface

- Encapsulates target environment dependencies for operating
the CIVC

- Provides the mechanism for scheduling and executing the
tests defined in the suite

CAIS Implementation Validation Capability
CIVC Framework

- Traces relationship between DOD-STD-1838, test objectives,
scenarios, and the taxonomy

- Allows for understanding of DOD-STD-1838 interpretations and
how implemented as test cases

- Implemented as on-line, hypertext information architecture

F-62

CAIS Implementation Validation Capability
Documentation

- Test Suite Operators Guide

- Test Report Readers Guide

- Version Description Document
- Product Specification

- -

CAIS Implementation Validation Capability
Future Enhancements

- Develop validation suite for DOD-STD-1838A implementations

- Initial work will extract/update current CIVC suite for use
on 1838A implementations

- Test selection criteria will guide further CIVC-A suite
development

F-63

CAIS Implementation Validation Capability
Users

- NATO Special APSE to contain 1838A Impimentation
- US Team to develop 1838A Implementation
- US IV&V Team to use CIVC and CIVC-A

F-64

e — e e

E&V REFERENCE SYSTEM

Version 2.0

May 1990

E&V REFERENCE SYSTEM
Objective

THE E&V REFERENCE SYSTEM ALLOWS USERS TO

GAIN AN UNDERSTANDING OF APSES AND APPROACHES
TO THEIR ASSESSMENT

- FIND USEFUL INFORMATION -- TERMINOLOGY, DEFINITIONS,

AND RELATIONSHIPS

FIND ASSESSMENT CRITERIA/METRICS AND "POINTERS"
TO SPECIFIC EVALUATION OR VALIDATION TECHNIQUES

FIND DESCRIPTIONS OF EVALUATION OR VALIDATION
TECHNIQUES

FIND GUIDEANCE IN THE SELECTION, INTERPRETATION,
AND INTEGRATION OF E&V TECHNIQUES AND RESULTS

F-65

THE E&V REFERENCE SYSTEM (1 OF 5)

Q. What is it?
A. Two Documents: Reference Manuall!) and Guidebook(?) (See Slide 2)

Q. Why ls it Needed?
A,. Importance of Decisions
A,. Complex, New Technology } (See Slide 3)

Q. How is it Used?
A. In Many Ways - (See Example, Slide 4)

Q. \'J
A. Much Exists; Much Still Needed -- (See Matrix, Slide 5)

(1) DTIC No. AD-A214 167
(2) DTIC No. AD-A214 166

N "%
THE E&V REFERENCE SYSTEM (2 OF 5)

Users May Consult
the Reference or Directly Consult
Q Manusl to Extract the Guidebook
(1) Useful] or (2) Pointers to

Information P Y . Sections in

Directly from <: (2o AT the Guidebook

the Manusl

E&V
Reference
Manual
s

O

...Which Provides Information About
€4V Tools and Techniques

F-66

8=

1D
{@’ THE E&V REFERENCE SYSTEM (3 OF 5)

Q. Why is it Needed?

A,. Importance of Decislons
o Large, Critical Ada-Based System to be Developed
o Quality and Cost of Systems Influenced by Environments
e ASPE and Tool Selections are Major Long-Term Investments

A,. Technical Complexity

e Many Inter-Related Elements, Some with New Technology,
Undergoing Rapid Change

e Diversity ot Choices and Viewpoints
e Common Framework, Terminology, Defintions Needed

THE E&V REFERENCE SYSTEM (4 OF 5)

Q. How s it Used?

A. Example: For the Function “Compilation’, What Attributes are
Important, and What Evaluation Techniques Apply to Relevant
Function-Attribute Pairs?

User
\
Reference
Activities Manuat
Index
Chapter 4
Tool/APSE
Index
Chapter 5
Tool/APSE {
Index

Chapter 6

Tool/APSE Guidebook
Index See Chapter 5,
“'Compliation System
Chapter 7 Assessors’

F-67

E&V REFERENCE SYSTEM (5 OF 5)

Assessment Techniques

Q. What Is the current i Evaluation Validation
status of E&V technology?
4 4 b L] 2
AssessmentSubjects | 5 | & | 55|54 F | “F
Compilation Systems «C NNC o
Target Code Generation Aids, etc. ()
Test Systems O (D
Tool/Host Interfaces @)))
Requirements/Design Tools) V)
CM Support Tools ¢))
Distributed System Dev. Tools O
Distributed APSEs O
Whole APSEs q) Ol
Adaptation Features O
Others ™
E&V Products
How to obtain
Ada Compiler Evaluation Capability

- Data Analysis Center for Software (DACS)
- ACEC Ordering Information Package

E&V Reference System
- Defense Technical Information Center (DTIC)
- E&V Reference Manual - # AD-A214 167
- E&V Guidebook - # AD-A214 166

Ada information Clearinghouse Bulletin Board <8DB,1SB,NP>
- (202) 694-0215 (301) 459-3865

DACS -- (315) 336-0937 DTIC -- (202) 274-7633

.

F-68

APPENDIX G

A Software Evaluation and Selection Framework

by
Major Patricia K. Lawlis
Air Force Institute of Technology

A key to the effective combination of the software evaluation and
selection processes is a common evaluation framework. Without it, each
evaluator uses different terminology and reports results in a different form,
and each selector must either use only one evaluation result or else determine
a way to convert all results into a common form. With it, a decision maker
can readily collect any amount of evaluation data which seems appropriate,
from any number of sources, and use it in the software selection process.

The evaluation framework outlined in this paper is intended as a pint of
departure for further work in this area. It is by no means complete, but the
important part is its organization. The framework is structured using two
main concepts. First, there is a distinction between absolute and relative
criteria, and second, the various criteria are organized in levels.

Many software characteristics must be specified in absolute terms. For
example, what operating system must be used to run the product, what options
are available with the product, what is the retail price of the product, etc.
Although these are not normally the types of things thought of as software
evaluation criteria, they are, nevertheless, important features of the
software assessment. In an attempt to avoid confusion, these absolute
characteristics of software are called features. In contrast to the features,
the software characteristics which are assessed in relative terms, such as
reliability, efficiency, etc., are called criteria.

Rather than attempting to consider all possible features and criteria at
one level of abstraction in an assessment, the main categories of features and
criteria are considered here as the highest level of abstraction. Then
successive lower levels of abstraction are used to determine the details under
each of these categories. The top level categories developed for both
features and criteria are given in Figure 1. The feature categories have been
put together as a composite of features identified in a number of sources
{DoD 89, Firth 87, Foreman 87, Houghton 87, Lehman 87, Lyons 86, Weiderman
89]. The criteria categories, on the other hand, are fairly well agreed upon
the area of software quality [Arthur 85, Bowen 85, DoD 89, Pressman 87]. The
only one that has been added is vendor support, and this was deemed
appropriate because it is often desirable to rate the quality of the support
provided by the product vendor.

Figure 2 illustrates feature details filled in at the second level for
some of the top level categories. These are a type of detailed features which
either are or are not a part of a given product. The lists of software
functions are general and may be applied to any software product. In Figures
3 and 4, many of the given feature details have numerical values or other
values which may be enumerated. Default values for acceptability are given

G-1

Feature Categories

analysis functions

applied standards
associated tool requirements
configuration requirements
contractual matters

cost

hardware control
management functions
numerics

options

security issues

source code sizing

timing requirements
transformation functions
user profile

Criteria Categories

correctness
efficiency
expandability
integrity
interoperability
maintainability
reliability
reusability
survivability
transportability
usability

vendor support
verifiability

Figure 1 - Categories of features and criteria

analysis functions

consistency checking
cross referencing

data flow analysis
mutation analysis
regression testing
requirements simulation
statistical profiling
traceability analysis

management functions

configuration management
cost management

object management
performance monitoring
program library management

quality management
resource management

applied standards

Ada (MIL-STD-1815A)
CAIS (MIL-STD-1838A)
PCTE

DIANA

GKS

PHIGS

DOD-STD-2167A

transformation functions

incremental compilation

editing

formatting

linking/loading

activities
transformation

object transformation

program generation

G-2

Figure 2 - Detail features which are or are not present in a product

Feature

Default Value

configuration requirements

host hardware

target hardware

host memory needed

host disk capacity needed
peripheral devices
operating system

support software
distributed system

<=4MB
<=50MB

contractual matters

no restrictions on users
number of users

number of CPUs

sale of derived software
source code available
support available

user profile
Feature
skill level

training

Possible Values

novice (default),
intermediate, expert

little or none (default)
moderate, extensive

Figure 3 - General detail features

G-3

with default values

Feature

bits in integer
max integer

bits in float
bits in exponent
fixed point delta
digits in float
long rep forms
short rep forms

source code sizing

lines in unit

units in compile

entries in task

elements in aggregate
discriminants in record
alternatives in case
alternatives in select
instantiations of generic

Default Value

>=16
>=32768
>=32
>=8
<=0.0001
>=8

>=5000
>=200
>=20
>=100
>=10
>=25
>=25
>=10

timing requirements

compiling lines of code
task rendezvous
subprogram overhead
exceptions overhead
clock resolution

max blocking time

>1000 jines/min
<0.00001 sec
<0.00001 sec
<0.00001 sec
<0.000001 sec
<0.00002 sec

Figure 4 - Detail features with default values specific to Ada compilers

for each feature detail of this type. In Figure 3, the detail features are
general, while the ones in Figure 4 are entirely specific to Ada compilers.
Of course, for a different type of software product, each of the specific
entries in these lists of feature details would have to change. It is
entirely possible that in some instances both general and specific details
could be applicable under one feature category. The detail feature lists in
these figures are not exhaustive by any means, but they show how the lower
levels can be organized.

G-4

In Figure 5, the second level of criteria is illustrated. Once again,
the literature show a fair amount of agreement on these details. In some
cases they are called metrics. Note that in many instances the same detailed
criteria are listed for more than one category. Thus, although the feature
categories are totally independent of one another, the crite-ia categories are
not.

There are many features and criteria which are important in almost every
software selection. These should be a part of every evaluation performed.
For many features, it is not so much a matter of evaluation as it is that
information about the feature should be put in the evaluation report. The
features which are almost always important involve such areas as product
identification, configuration requirements, and contractual matters. These
are listed in Figure 6. Many criteria should be seriously considered for
evaluation and reporting by every individual and organization which provides
evaluation data. In many ways, the evaluation data is not so easy to gather
for these criteria as it is for the features, but it is every bit as
important. These criteria of importance are given in Figure 7.

There is currently no general agreement on either the terminology of the
definitions of the terms used in software evaluation, so a glossary of the
terms as used here is provided at the end of this paper. Lower levels of
detail can be filled in more completely with subsequent work in this area.
The appeal of such an organization of features and criteria is that it can be
very flexible, accommodating new ideas and new technology concepts as they
arise, but at the same time the basic framework remains stable.

This paper has presented a framework which can be used for any type
of software evaluation and selection scenario. This framework is a first step
toward solving the problem of consistent reporting of evaluation data.
furthermore, it provides a basis for developing a decision support system
(DSS) which can then be used in the software selection process. Hopefully, it
will also provide a basis for a common understanding of the evaluation and
selection processes. This will make it possible for decision makers to insist
on getting both complete and consistent data on which to base their decisions.
Until this occurs, it is no wonder that the software crisis still exists.

G-5

correctness reusability
completeness application independence
consistency generality
traceability hardware independence
modularity
efficiency operating system independence

communication effectiveness

processing effectiveness
storage effectiveness

expandability
augmentability
generality
modularity
self documentation
simplicity

integrity
security
standards compatibility

interoperability
communication commonality
data commonality
modularity
rehostability
retargetability

maintainability
augmentability
communicativeness
consistency
modularity
self documentation
simplicity
structuredness
test availability

reliability
accuracy
completeness
consistency
fault tolerance
modularity
simplicity

self documentation

survivability
autonomy
distributedness
fault tolerance
modularity
reconfigurability

transportability
hardware independence
modularity
operating system independence
rehostability
retargetability

self documentation
support software independence

usability
capacity
ease of installation
ease of use
maturity
on-line help
power
tailorability
user documentation

vendor support
corporate health
pricing policies
reputation

support policies

verifiability
communicativeness
modularity
self documentation
simplicity
standards compatibility
structuredness
test availability

Figure 5 - Criteria details

G-6

Product identification:
Product name and version
Vendor name

Configuration requirements:
Host hardware
Target hardware
Operating system
Minimum host primary memory
Minimum host disk space

Contractual matters:
Number of users
Number of CPUs
Is support available
Basic software price
Installation costs
Other costs

Other required information:
Applied standards
Associated tool requirements
Security level
User skill Tevel required
User training required
Functions supported

Figure 6 - Features which should always be recorded

augmentability
completeness

consistency

fault tolerance
modularity

simplicity

ease of use

user documentation
tailorability

corporate health
reputation

processing effectiveness
storage effectiveness
standards compatibility
application independence
hardware independence
operating system independence

Figure 7 - Criteria which should always be evaluated

G-7

Glossary

The following definitions have been adapted from several sources. In cases
where these sources provided different definitions for the same term, all
definitions have been included. Each definition is given in one sentence.
The first definition always expresses the sense in which the term is used in
this paper. the definitions for features (absolute characteristics) are
preceded by (f) and the definitions for criteria (relative characteristics)
are preceded by (c) [Lawlis 89].

accuracy - (c) A quantitative measure of the magnitude of error expressed as
a function of the relative error, with a high value corresponding to a small
error. The precision of computations and control. Those characteristics of
software which provide the required precision in calculations and outputs.

activities transformation - (f) A software function which performs a
transformation on a product of one life cycle activity to produce a product
for another activity.

Ada (MIL-STD-1815A) - (f) The standard which specifies the Ada language.

alternatives in case - (f) The maximum number of individual alternatives
which can be defined in a case statement.

alternatives in select - (f) The maximum number of alternatives which can be
defined in a select statement.

analysis functions - (f) Software functions which provide an examination of
a substantial whole to determine both qualitative and quantitative properties.

application independence - (c) The extent to which software is not dependent
on the support required for a particular application. Those characteristics
of software which determine its nondependency on database system, microcode,
computer architecture, and algorithms.

applied standards - (f) Standards to which software or its inputs or outputs
conform.
associated tool requirements - (c) Tools which must be available and

compatible with the software.

augmentability - (c) The extent to which software provides for expansion of
capability for functions and data. Those characteristics of software which
provide for expansion of capability for functions and data.

autonomy - (c) The extent to which software is not dependent on interfaces

and functions. Those characteristics of software which determine its
nondependency on interfaces and functions.

G-8

bits in float - (f) The total number of bits used for a float
representation.

bits in exponent - (f) The number of bits used for the representation ot the
exponent (including its sign in a float representation.

bits in integer - (f) The number of bits used for an integer representation.

CAIS (MIL-STD-1838A) - (f) The standard which specifies the Common APSE
Interface Set, a set of interfaces to the APSE kernel.

capacity - (c) The extent of the upper and lower limits of the functions
implemented by a tool.

clock resolution - (f) The amount of time distinguishing (the difference
between) two consecutive clock times.

communication commonality - (c) The degree to which standard interfaces,
protocols, and bandwidths are used. Those characteristics of software which
provide for the use of interface standards for protocols, routines, and data
representations.

communication effectiveness - (c) The extent to which software performs its
intended functions with a minimum consumption of communications resources.
Those characteristics of the software which provide for minimum utilization of
communications resources in performing functions.

communicativeness - (c) The degree to which the program provides feedback
while it is operating to keep the user informed of the functions being
performed.

compiling lines of code - (f) The number of lines of source code which are
compiled in a minute (wall clock time).

completeness - (c) The extent to which a component provides the complete set
of operations necessary to perform a function. The degree to which full
implementation of required function has been achieved. Those characteristics
of software which provide full implementation of the functions required.

configuration management - (f) A software function which establishes
baselines for configuration items, controls the changes to these baselines,
and controls releases to the operational environment.

configuration requirements - (f) Those specific components of system
hardware and/or software which are required in order for the software to
function correctly.

consistency - (c) The extent to which uniform design and documentation
techniques have been used throughout the software development project. The
use of uniform design and documentation techniques throughout the software
development project. Those characteristics of software which provide for
uniform design and implementation techniques and notation.

G-9

consistency checking - (f) A software function which determines whether or
not an entity is internally consistent in the sense that it is consistent with
its specification.

contractual matters - (f) Features determining the legal use of and support
provided for software which may be specified in a contract with the vendor at
the time of purchase.

corporate health - (c) The extent to which it is reasonable to assume that
the vendor will remain in business with the ability to continue the current
level of customer support.

correctness - (c) The extent to which software design and implementation
conform to specifications and standards. The extent to which a program
satisfies its specification and fulfills the customer’s mission objectives.
The extent to which software is free from design defects and from coding
defects; that is, fault free. Agreement between a component’s total response
and the stated response in the functional specification (functional
correctness), and/or between the component as coded and the programming
specification (algorithmic correctness).

cost - (f) The total price associated with the purchase and productive use
of the software (including the basic software price, training costs,
installation costs, and any other ancillary costs associated with making the
software a productive part of the user’s facility).

cost management - (f) A software function which manages cost functions (such
as the cost organization structure and the cost estimation methodology).

criteria - Characteristics of software which are used to make relative
comparisons of similar software implementations.

cross referencing - (f) A software function which references entities to
other entities by logical means.

data commonality - (c) The extent to which standard data structures and
types are used throughout the program. The use of standard data structures
and types throughout the program. Those characteristics of software which
provide for the use of interface standards for data representations.

data flow analysis - (f) A software function which analyzes the formal
requirements statements to determine interface consistency and data
availability.

DIANA - (f) The standard which specifies a Descriptive Intermediate
Attributed Notation for Ada, an abstract data type such that each object of
the type is a representation of an intermediate form of an Ada program.

digits in float - (f) The largest number of decimal digits which may be
represented by a float.

G-10

discriminants in record - (f) The maximum number of discriminants which can
be defined for a single record type.

distributed system - (f) A system in which software functions are
geographically or logically separated within the system.

distributedness - (c) The degree to which software functions are
geographically or logically separated within the system. Those
characteristics of software which determine the degree to which software
functions are geographically or logically separated within the system.

DOD-STD-2167A - (f) The standard which establishes uniform requirements for
software development that are applicable throughout the system life cycle.

ease of installation - (c) The relative ease with which a software product
may be integrated into its operational environment and tested in this
environment to ensure that it performs as required.

ease of use - (c) The relative ease with which a novice user can become an
effective user of the program.

editing - (f) A software function which provides for selective revision of
computer-resident data (the data may be textual, graphical, some internal
representation, etc.).

efficiency - (c) The extent to which software performs its intended
functions with a minimum consumption of computing resources. The amount of
computing resources and code required by a program to perform its function.
The relative extent to which a resource is utilized. The ratio of actual
utilization of the system resources to optimum utilization.

elements in aggregate - (f) The maximum number of elements which can
constitute an aggregate.

entries in task - (f) The maximum number of entries which can be defined in
a single task.

exactness - The measure of assuredness that a component does no more than it
was specified to do and does not contain malicious code.

exceptions overhead - (f) The execution overhead time which is attributable
to the presence of exception handlers in the unit.

expandability (extensibility) - (c) The degree to which architectural, data,
or procedural design can be extended. The relative effort to increase the
software capability or performance by enhancing current functions or by adding
new functions or data. The extent to which a component allows new
capabili;ies to be added and existing capabilities to be easily tailored to
user needs.

fault tolerance - (c) The extent to which the system has the built-in
capability to provide continued correct execution in the presence of a limited
number of hardware or software faults. Those characteristics of software
which provide for continuity of operations under and recovery from non-nominal
conditions. The protection of a component from itself, user errors, and
system errors. The ability to recover and provide meaningful diagnostics in
the event of unforeseen situations. The damage that occurs when the program
encounters an error.

features - Characteristics of software which are used to specify absolute
requirements for software implementations.

fixed point delta - (f) The smallest interval which may be used to
distinguish among fixed point values.

formatting - (f) A software function which arranges data according to
predefined and/or user-defined conventions.

generality - (c) The breadth of the potential application of program
components. Those characteristics of software which provide breadth to the
functions performed with respect to the application.

GKS - (f) The standard which specifies the Graphical Kernel System, a
graphics system which allows programs to support a wide variety of graphics
devices and which is defined independently of programming languages.

hardware control - (f) The ability of the software to control hardware
directly (such as interrupts, bit manipulations, file servers, task
scheduling, preemption, etc.).

hardware independence - (c) The degree to which the software is decoupled
from the hardware on which it operates. Those characteristics of software
which determine its nondependency on specific hardware. The degree to which
hardware dependencies are isolated in a distinct library unit.

host disk capacity needed - (f) The combined storage size (in megabytes)
required of the on-line disk units of the host hardware to ensure that the
software will run properly.

host hardware - (f) The specification of the manufacturer and model of the
computer hardware which will serve as the development platform for the
software to be developed.

host memory needed - (f) The size (in megabytes) required of the primary
memory of the host hardware to ensure that the software will run properly.

incremental compilation - (f) A software function which produces new object
code for a particular source code unit from the previous object code for that
unit and a set of specified changes to the source code which produced the
original object code.

G-12

instantiations of generic - (f) The maximum number of times a single generic
unit can be instantiated.

integrity - (c) The extent to which unauthorized access to or modification
of software or data can be controlled. The extent to which the software will
perform without failures due to unauthorized access to the code or data within
a specified time period. The probability that the system will perform without
failure and will protect the system and data from unauthorized access.

interoperability - (c) The degree to which an APSE may provide database
objects and their relationships in forms usable by the components and user
programs of another APSE without conversion. The extent to which two or more
systems have the ability to exchange information and to mutually use the
information that has been exchanged. The effort required to couple one system
to another. The relative effort to couple the software of one system to the
software of another system. The probability that two or more systems can
exchange information under stated conditions and use the information that has
been exchanged.

lines in unit - (f) The maximum number of source code lines which can be
compiled in one compilation unit.

1inking/loading - (f) A software function which creates a load/executable
module on the host machine from one or more independently translated object
modules or load modules by resolving cross-references among the object
modules, and possibly relocating elements.

long rep forms - (1) The ability to specify a number (integer or float)
which will be represented using more total bits than is used by numbers of the
same base type without the "long" designation.

maintainability - (c) The extent to which a component facilitates updating
to satisfy new requirements or to correct deficiencies. The effort required
to locate and fix an error in a program. The ease of effort for locating and
fixing a software failure within a specified time period. The ease with which
software can be maintained. The probability that the system can be restored
to a specified condition within a specified amount of time.

malicious code - operations which covertly damage or attempt to by-pass
system security.

management functions - (f) Software functions which aid the management or
control of system/software development.

maturity - (c) The extent to which a component has been used in the
development of deliverable software by typical users and to which the feedback
from that use has been reflected in modifications to the component.

max blocking time - (f) The maximum amount of overhead time used by the
run-time system to block a task.

max integer - (f) The maximum number which may be represented as an integer.

G-13

modularity - (c) The extent to which software is composed of discrete
components such that a change to one component has minimal impact on other
components. The extent to which a component is implemented in a hierarchical
structure in which identifiable functions are isolated in separate compilation
units. The functional independence of program components. Those
characteristics of software which provide a structure of highly cohesive
components with optimum coupling.

mutation analysis - (f) A software function which applies test data to a
program and its "mutants" (programs that contain one or more likely errors) in
order to determine test data adequacy.

no restrictions on users - (f) Not disallowing or constraining the use of
the software by a particular class of users (such as people not employed by
the purchasing organization).

number of CPUs - (f) The total number of computers which may legally serve
as the residence for a particular software component.

number of users - (f) The maximum number of users permitted simultaneous
execution of a single purchased copy of the software.

numerics - (f) Software features which determine the computational
capabilities of the software.

object management - (f) A software function which manages a collection of
interrelated data (objects) stored together with controlled redundnacy,
serving one or more applications and independent of the programs using the
data (objects).

object transformation - (f) A software function which performs a
transformation on a particular system object to produce another system object.

on-1in help - (c) The extent to which user documentation is readily
available to the user from the program while it is operating.

operating system - (f) The specification of the name and version of the
operating system under which the software will run.

operating system independence - (c) The degree to which the program is
independent of operating system characteristics. Those characteristics of
software which determine its nondependency on a specific operating system.
The degree to which operating system dependencies are isolated in a distinct
library unit.

options - (f) Software features whose specified values (each of which causes

the software to execute i a somewhat ditferent, yet controlled, manner) are
set by the user.

G-14

PCTE - (f) The standard which specifies the Portable Common Tool
Environment, a hosting structure defined by a set of program-callable
primitives which support the execution of programs in terms of a virtual,
machine independent level of comprehensive facilities.

performance monitoring - (f) A software function which monitors the
performance characteristics of the finished product.

peripheral devices - (f) The hardware devices which are attached to and work
with the computer but are not an integral part of it (such as printers,
terminals, etc.).

PHIGS - (f) The standard which specifies the Programmers Hierarchical
Interactive Graphics Standard, a sophisticated graphics support system that
controls the definition, modification, and display of hierarchical graphics
data.

power - (c) The extent to which a component has capabilities, such as
default options and wild card operations, that contribute to the effectiveness
of the user.

pricing policies - (c) The degree to which the vendor’s prices for product
support and upgrades are reasonable and in accordance with accepted practice
within the software industry.

processing (execution) effectiveness - (c) The extent to which software
performs its intended functions with a minimum consumption of processig
resources. The run-time performance of a program. Those characteristics of
the software which provide for minimum utilization of processing resources in
performing functions. The choice between alternative algorithms based on
those taking the least amount of time.

program generation - (f) A software function which provides the translation
or interpretation used to construct computer programs (such as language
translator generator, syntax analyzer generator, code generator generator,
environment definition generator, user interface generator, etc.).

program library management - (f) A software function which performs the
creation, manipulation, display, and deletion of the various components of a
program library.

quality management - (f) A software function which manages the determination
of the achieved level of quality in deployed software systems.

reconfigurability - (c) The extent to which software provides for continuity
of system operation when one or more processor, storage units, or
communication links fails. Those characteristics of software which provide
for continuity of system operation when one or more processors, storage units,
or communication links fails.

regresgion testing - (f) A software function which performs the rerunning of
tests in order to detect errors spagned by changes or corrections made during
software development and maintenance.

rehostability - (c) The extent to which an APSE component may be installed
on a different host or different operating system with a minimum of
reprogramming. The ability of an APSE component to be installed on a
different host or different operating system with needed reprogramming
localized to the KAPSE or machine dependencies.

reliability - (c) The extent to which a component can be expected to perform
its intended functions in a satisfactory manner over a specified period of
time. The extent to which a program can be expected to perform its intended
function iwth required precision. The extent to which the software will
perform without any failures within a specified time period. The probability
that software will not cause the failure of a system for a specified time
under specified conditions. The probability that the system will perform as
intended under stated conditions for a specified period of time.

reputation - (c) The degree of confidence expressed by program users in the
vendor’s willingness and ability to provide support for the program.

requirements simulatior - (f) A software function which executes code-
enhanced requirements statements to examine functional interfaces and
performance.

resource management - (f) A software function which manages the resources
attributed to an entity.

retargetability - (c) The extent to which an APSE component may accomplish
its function with respoect to another target with a minimum of modification.
The ability of an APSE component to accomplish its function with respect to
another target.

reusability - (c) The extent to which a program (or parts of a program) can
be reused in other applications. The relative effort to convert a software
component for use in another application. The relative effort to adapt
software for use in another application.

sale of derived software - (f) Disallowing or constraining the conditions
under which some portion of the purchased software may be included in software
provided by the purchaser to a third party.

security - (c) The extent of protection of computer hardware and software
from accidental or malicious access, use, modification, destruction, or
disclosure. The availability or mechanisms that control or protect programs
and data.

security issues - (f) Features which affect the use of the software in a
classified environment.

G-16

self documentation - (c) The degree to which the source code provides
meaningful documentation. Those characteristics of software which provide
explanation of the implementation of functions. The technical data, including
on-line, documentation, listings, and printouts, which serve the purpose of
elaborating the design or details of a component.

short rep forms - (f) The ability to specify a number (integer or float)
which will be represented using fewer total bits than is used by numbers of
the same base type without the "short" designation.

simplicity - (c) The extent to which the complexity of a system or system
componert (determined by such factors as the number and intricacy of
interfaces, the number and intricacy of conditional branches, the degree of
nesting, the type of data structures, and other system characteristics) is
kept to a minimum. The degree to which a program can be understood without
difficulty. Those characteristics of software which provide for definition
and implementation of functions in the most noncomplex and understandable
manner.

skill level - (f) The level of experience in using similar software.

source code available - (f) The possibility that the source code of the
software can be purchased.

source code sizing - (f) The limits imposed on the size of selected
components of the software.

standards compatibility - (c) The degree to which the program conforms to
specific standards.

statistical profiling - (f) A software function which provides the analysis
of a program to determine statement types, number of occurrences of each
statement type, and the percentage of each statement type in relation to the
complete program.

storage effectiveness - (c) The extent to which software performs its
intended functions with a minimum consumption of storage resources. Those
characteristics of the software which provide for minimum utilization of
storage resources. The choice between alternative source code constructions
based on those taking the minimum number of words of object code or in which
the information-packing is high.

strgcturedness - (c) The degree to which the program is constructed of a
basic set of control structures, each oe having one entry point and one exit.

subprogram overhead - (f) The overhead time involved in executing a
subprogram call.

support available - (f) The possiblity of purchasing support for the
software from the vendor on a continuing basis.

G-17

support policies - (c) The type and extent of support provided by the vendor
for the software.

support software - (f) The specification of the anme and version of the
support software required to work with the software in question to ensure
proper functionality.

support software independence - (c) The degree to which the program is
independent of nonstandard programming language features and other
environmental constraints. Those characteristics of software which determine
its nondependency on specific support software in the environment (utilities,
input and output routines, libraries). The degree to which support software
dependencies are isolated in a distinct library unit.

survivability - (c) The extent to which the software will performa and
support critical functions without failures within a specified time period
when a portion of the system is inoperable. The extent to which software will
continue performing when a portion of the system has failed.

tailorability - (c) The extent to which the user interface of the program
may be altered to conform to the preferences of the user.

target hardware - (f) The specification of the manufacturer and model of the
computer hardware on which the software to be developed will be executed.

task rendezvous - (f) The overhead time required to accomplish a task
rendezvous.

test availability - (c) The extent to which tests are available to verify

that a program functions in accordance with its requirements. The extent to
which tests are available to support the evaluation of a program’s performance
with respect to specific verification criteria.

timing requirements - (f) The limits imposed on the execution time of
selected components of the software.

traceability - (c) The ability to trara a design representation or actual
program component back to requirements. Those characteristics of software
which provide a thread of crigin from the implementation to the requirements
with respect to the specified development envelope and operational
environment.

traceability analysis - (f) A software functionw hich checks for internal
consistency within the software requirements specification.

training - (f) The amount of trainig required to be able to use the software
productively.

transformation functions - (f) Software functions which describe how the
subject is manipulated to accommodate the user’s need.

G-18

transportability (portability) - (c) The effort required to transfer the
program from one hardware and/or software system environment to another. The
relative effort to transport the software for use in another environment. The
extent to which a component can be adapted for use in another environment.
The extent to which a component may be installed on a different APSE without
change in functionality.

units in compile - (f) The largest number of compilation units which can be
involved in a single compile.

usability - (c) The extent to which resources required to acquire, install,
learn, operate, prepare input for, and interpret output of a component are
minimized. The effort required to learn, operate, prepare input, and
interpret the output of a program. The relative effort for using software
(training and operation). The probability that users can operate the system
under specified conditions without user error given they have received
specified training.

user documentation - (c) The extent to which documentation conveys to the
end user of a system instructions for using the system to obtain desired
results. The technical data which serve the purpose of elaboratig the design
or details of a component to the user.

user profile - (f) Characteristics required of the user in order to use the
software productively.

vendor support - (c) The extent to which a vendor is willing and able to
provide the software user with assistance to ensure that the softwae performs

desired functions and is willing and able to support the continuing maturation
of the product.

verifiability - (c) The extent to which a component facilitates the
establishment of verification criteria and supports evaluation of its
performance. The effort required to test a program to ensure that it performs
its intended function. The relative effort to verify the specified software
operation and performance. The extent to which the specified system operation
and performance determine the conditions and criteria for tests. The extent
to which a component facilitates the evaluation of its correctness,
completeness, and exactness.

G-19

References

[Arthur 85] L.J. Arthur, Measuring Programmer Productijvity and Software
Quality, New York: John Wiley & Sons, 1985.

[Bowen 85] T.P. Bowen, G.B. Wigle, and J.T. Tsai, Specification of
Software Quality attributes, Volume II, AD A153989, Griffiss AFB, NY: Rome
Air Development Center, February 1985.

[DoD 89] Department of Defense, E&V Reference Manual, Version 2.0,
September 1989.

[Firth 87] R. Firth, V. Mosley, R. Pethia, L. Roberts, W. Wood, A_Guide
to the Classification and Assessment of Software Engineering Tools,
CMU/SEI-87-TR-10, Pittsburgh: Software Engineering Institute, August 1987.

[Foreman 87] J. Foreman and J. Goodenough, Ada Adoption Handbook: A
Program Manager’s Guide, Version 1.0 CMU/SEI-87-TR-9, Pittsburgh: Software
Engineering Institute, May 1987.

[Houghton 87] R.C. Houghton and D.R. Wallace, "Characteristcs and Functions

of Software engineerig environments," Software Engineering Notes, vol. 12, no.
1, January 1987.

[Lawlis 89] P.K. Lawlis, Supporting Selection decisions based on the

Technical Evaluation of Ada Environment and Their Components, Ph.D.
dissertation, Arizona State University, 1989.

{Lehman 87] M.M. Lehbman and W.M. Turski, "Essential Properties of IPSEs,"
Software Engineering Notes, vol. 12, no. 1, January 1987.

[Lyons 86] T.G.L. Lyons and J.C.D. Nissen, Selecting an Ada Environment,
New York: Cambridge University Press, 1986.

[Pressman 87] R.S. Pressman, Software engineering, Second edition, New
York: McGraw-Hill, 1987.

[Weiderman 89] N. Weiderman, Ada Adoption Handbook: Compiler Evaluation and
Selection, Version 1.0, AD A207717, Software Engineering Institute,

March 1989.

G-20

APPENDIX H

E&V TOOLS AND AIDS DOCUMENT

Version 3.0
September 1990

Prepared by

Evaluation and Validation Team
Requirements Working Group

for the
Ada Joint Program Office

The Task for the Evaluation and Validation of Ada Programming Support Environments
(APSE's) is sponsorcd by the Ada Joint Program Office

CONTENTS

1 INTRODUCTIONcocciiiiiiirereerierenneniaeseessneseesssasssesssessesssessssssesssensesssssssssesnsens 3
1.1 Purpose of the Evaluation and Validation Taskccoceeveverreieennnnns 3
1.2 The Need for E&V TechnologYcccccevieiremiimnruercseersrersennneessansessnenns 4
1.3 Purpose of the Tools and Aids Documentcccccoovevviinivrreeenieneennn. 4
1.4 SCOPE ittt er e e st srse s e nssssssesnassssneasans s srne s snessneassrraeernrananes 5

2 TYPES OF ASSESSORSooiciiiriceeieeiseesieniseesstessessssensaesssesassesssesssenssessssesssasanes 5
2.1 Requirecments and Specificationscc.ccccecciveiieiiiiinniiniiiiiinceececeeennnn 6
2.2 GUIAEIINESovviriiiiiiiinieicireee st nras et saet et e ssnantaessssssmnanssessnnanssasnnne 6
2.3 MELTICS ..oiiiiiiiiicireiiencster e ecsirnee s e aarec e ae s sansasssse s sssenesseesesssnssaasassssensns 6
24 Benchmarks, Tests, and Test SUitesccccccverineieriiniiniiiiiniiiiineiieneeni.. 6
2.5 QUESLIONNAITES ..coeuuiivrreenriirerrriereneretsiieresesernessrsssesrnessrnssessrsssrassssassssrnaneen 6
2.6 DECISION ALASeeivivrieiiiiiiicierrcreetecssnsnecstsssscenesessssnessosssnasssssneessessanes 6
2.7 Monitored EXPErimentsccccovveenieimnneciinniininmsineesioerinsneeeensnnenes 7

3 ASSESSOR CAPABILITIEScccooniiiieennirenieniiteinnnssstssnisesnesssssssesssesssssssssnsonns 7
3.1 Compilation System Evaluatorsccccccceccmmeimiinicniinneeeninicoiiecessessnons 7

3.1.1 Compiler Evaluatorsccccccccrecvniemniniiiinnnrereeinanisesstssosmiseseeee 8
3.1.2 Code Generation Evaluators ..o, 8
3.1.3 Program Library EvaluatOorsiriviiiernecvesrecssninennanns 8
3.1.4 Runtime Evaluators ... e 9
32 Target Code Generation Aids and Analysis Toolset Evaluators 9
3.3 Test SySIEmMS ASSESSOTS ...cccccrvercccrsremirersinmsinmersossunesssesssesssnssssessnsesnssnsssnes 9
3.4 Requirements/Design Support ASSESSOIS ...coocvinneveieenciviniisnnnneneennens 9
35 Configuration Management Support Evaluators ..., 9
3.6 WHhole APSE ASSESSOTSccovvviieeeeisisscnerenissssssssseesicssssssraeesssessssssarsssenses 10

37 CAIS (Common APSE Interface Set) Evaluation and CAIS
Validation ASSESSOTScccccvereeiiierissenrissnneeresisrsneisssiesssneessessssessssssseens 10

3.8 Distributed Systems Development and Runtime Support
EVAIUALOTS .ooooiiiiiiiiiiiciiceetnrieeceseiersesesneseneetasssesssssnnsusssanessesssssnnsenssnssssnsanes 10
3.9 Distributed APSE Evaluatorsccccovvvmrummrevmreriseiniiiecenienenneen, 10
3.10 Transportability Evaluatorsccvviiiiiiniiiiiiiiiiniiniinniniinenieineenn, 10
3.11 Methodology Support Evaluators ..., 10
3.12 Interoperability Evaluatorsc.cc..cccimviiiiiriimniiiininniiinn . 11
3.13 Multilingual APSE Evaluators ..., 11

4 CONCLUSION.......coioiiirteciirecntessnsesstsscatessssiossassssssssnesssssssssnssssnssonsasssanssesnasssnnsssas 11

APPENDIX A ACRONYMSreicttinnnnnesensereseseesssnessanisnnessssssssssnsessesiosssssanns 12

APPENDIX B COMPILATION SYSTEM EVALUATORSccooveiinnnniinnnnnneiicsnnn, 13

APPENDIX C TEST SYSTEM ASSESSORScocooiminnmiiinnnniinnniiiininenennineeseensanens 26

APPENDIX D REQUIREMENTS/DESIGN SUPPORT EVALUATORSccoeuee. 28

APPENDIX E WHOLE APSE ASSESSORScocovemrmrrnmernnrnnnsnininneensiesssnesinacssnnne 30

APPENDIX F E&V TEAM REQUIREMENTS WORKING GROUP

MEMBERSHIPiiiitriicrenicnniensinieniisneesasisieiieesssssesmeen 32

H-2

1 INTRODUCTION

The Tools and Aids Document is the result of deliberations of the Requircments
Working Group (REQWG) of the Ada Programming Support Environment
(APSE) Evaluation and Validation (E&V) Team conceming technology required
to evaluate and validate APSEs and thcir components. This document is a
reflection of the APSE E&V Requirements Document and the state of current
APSE tools. It also reflects views on the subject which were obtained from a
number of surveys conducted among the APSE E&V Team and appropriate
ARPANet-MILNet Interest Groups.

1.1 Purpose of the Evaluation and Validation Task

The Ada community, including government, industry, and academic
personnel, needs the capability to assess APSEs (Ada Programming Support
Environments) and their components and to determine their conformance to
applicable standards (e.g., DOD-STD-1838A, the CAIS standard). The technology
required to fully satisfy this need is extensive and largely unavailable; it
cannot be acquired by a single government-sponsored, professional society-
sponsored, or private effort. The purpose of the Evaluation and Validation
(E&V) Task is to provide a focal point for addressing the need by (1)
identifying and defining specific technology requirements, (2) developing
selected elements of the required technology, (3) encouraging others to
develop some elements, and (4) collecting information describing existing
elements. This information will be made available to DoD components, other
government agencies, industry, and academia.

Validation is the process of determining conformance of an APSE or APSE
component to existing standards. For example, Ada compilers are currently
required to undergo validation by the Ada Validation Organization (AVO) to
insure conformance to the Ada language standard (MIL-STD-1815A). In the
future, validation may encompass additional standards such as the Common
APSE Interface Set (CAIS).

Evaluation is the process of assessing characteristics or attributes of an APSE
or APSE component for which there may or may not be standards. Examples of
such attributes include wusability, efficiency, and maintainability. In the
absence of standards, such attributes are free to vary across different APSE
implementations. Consequently, these attributes are of interest to users when
selecting between APSEs because they contribute to, or detract from, overall
APSE quality and suitability for different applications or methodologies. Even
in cases where standards do apply to APSE components (e.g., MIL-STD-1815A
and Ada compilers), evaluations will be used to supplement information gaincd
during validation processes.

It is anticipated that the primary benefits of E&V will be to encourage the
development of quality APSEs and APSE components, and to provide users and
developers with a uniform and comprehensive means for assessing and
selecting APSE's suitable for their specific applications and methodologics.

H-3

1.2 The Need for E&V Technology

Technology for the assessment of APSEs and APSE components (tools) is needed
because of the difficulty in assessing APSEs and because of the importance of
the decisions made based on these assessments. The importance of an APSE
selection is evident when one considers the large, critical, Ada-based systems
to be developed in the coming years. The effectiveness, reliability, and cost of
these systems will be strongly influenced by the environments used to develop
and maintain them. From the point of view of a software developing
organization, the decision to select an APSE can be an important investment
decision with long-lasting influence on a number of projects and the
organization's method of operation, training, and competitiveness. From the
point of view of a software maintenance organization, the environment used
will strongly influence the organization's effectiveness, as well as the cost of
its operations and training. Given the importance of APSE and APSE
component selection, a technology to facilitate (or at least give some measure
of quantification to the selection process) is required. Thus, the assessment
technology addressed hercin necds to be developed.

The difficulty of assessing APSEs and tools exists for several reasons. First, an
APSE represents very complex technology with many elements, which can be
assessed individually or in combination. Second, there is a confusing diversity
of choice with respect to individual tools, tool sets, or "whole APSEs", and there
are a number of ways of viewing APSEs (see Chapter 3 of the E&V Reference
Manual). Third, the state of the art of APSE architecture and of some
categorics of tools (e.g., graphic design tools) is constantly evolving. Finally,
there is a lack of historical data relevant to APSEs, partly because of the
gencral pace of technological change and partly because we are dealing with
Ada, a relatively new implementation language. E&V technology provides
methods and techniques to overcome these difficulties and provides a usis for
assessing performance and other attributes of APSEs.

In addition to the need for assessment technology itself, there is a need for
information about this technology. Potential buyers and users of APSEs and
tools need a framework for understanding APSEs and their assessment, as well
as information about specific assessment techniques. Similarly, vendors of
tools and APSEs need to be aware of the deficiencies of current products, as
well as the criteria to be used in the assessment of future products. Such
awareness on both sides, expressed in a common terminology, should speed up
the evolution of better software engineering environments.

1.3 Purpose of the Tools and Aids Document

A critical need exists to support the Ada community with the selection,
improvement, and development of APSEs and APSE components. This support
extends not only to system developers but also to compiler and other APSE
component builders, Ada users, educators, and managers. The information
hcrein contained is presented for those who are willing and able to fund the
continued evolution of E&V technology. Examples of such organizations are
the Ada Joint Program Office (AJPO), Software Technology for Adaptable
Reliable Systems (STARS), Joint Intcgrated Avionics Working Group (JIAWG),
major program offices, the scrvices and any other agency or group capable of
providing the funding. To this end, this document identifies the communities’

H-4

E&V tcchnology nceds, provides dcefinitions of thosc nceds and prioritizes
them.

In order to simplify the discussions, the term assessor is used to refer to those
tools (e.g., Ada Compiler Evaluation Capability suite) and aids (e.g., checklists)
for use in APSE and APSE component evaluation and/or validation. Types of
assessors are discussed in Section 2 of this document. They include guidelines,
checklists, and experimental tests and procedures. Acquisition of assessors
includes incorporation of existing capabilities into the E&V assessment set,
purchase of commercial off the shelf (COTS) products, or the development and
implementation of needed technologies for assessment.

This document provides information and recommendations from the APSE E&V
Team on the kinds of assessors to acquire, prioritized ordering of assessor
acquisition and a rationale for those priorities.

1.4 Scope

The APSE E&V Reference Manual identifies the attributes and functionality of
APSEs and APSE components which are perceived to require evaluation and/or
validation (i.e., assessment). This document identifies the kinds of assessors
needed to perform the assessment. This document is intended to provide the
AJPO and other potential sponsors with a reference for use in the allocation of
resources, RFP preparations, and source seclection for assessors to support the
tasks associated with APSE E&V.

The Tools and Aids Document is a pragmatic guide to assessor acquisition based
on the APSE functions available which need evaluation and/or validation, and
on the technologies and implementations of these technologies available as
APSE function assessors. Through the prioritization of needs, this document
emphasizes aear-term acquisition of assessors.

Appendices B, C, D, and E provide guidance to tool and aid developers
concerning the purpose of assessors in selected areas described in this
document, the functionality to be assessed by the t~ols and aids developed in
these areas as well as the attributes to be assessed, and possible approaches for
accomplishing the desired assessment.

2 TYPES OF ASSESSORS

Assessors are the mechanisms for providing information about certain
characteristics of APSE components, including functionality, performance,
maturity, and the suitability of documentation.

Types of assessors include, but are not limited to, the following:

- Requirements and Specifications
Guidelines

Metrics

Benchmarks, Tests, and Test Suites
Questionnaires

H-5

- Decision Aids
- Monitored Experiments

Each assessor type may be implemented in a number of ways, such as
automated tools, individual tests and batteries of tests, and manual procedures.

2.1 Requirements and Specifications

Requirements and specifications define the functionality, characteristics,
and performance required of an APSE function or tool. These may include
quantitative measures that may be made by other assessors and characteristics
assessed by qualitative judgements only. As standards are adopted for various
APSE capabilities, they will be included and used as the basis of validation for
that capability.

2.2 Guidelines

Guidelines provide recommendations for the use or construction of an APSE
function or component. Furthermore, guidelines may describe characteristics
or qualities the tool should have.

2.3 Metrics

Metrics provide quantitative data about selected characteristics of an APSE or
an APSE component.

2.4 Benchmarks, Tests, and Test Suites

Benchmarks are standard tests used to measure the execution performance or
acceptability of an APSE function. Benchmarks may test one specific aspect of
an APSE function, or may test a number of functions. Tests and Test Suites are
instruments used to measure the performance, correctness, or other
characteristics of APSE functions.

2.5 Questionnaires

Questionnaires are used to gather data not easily attainable by examination of
the APSE or APSE component itself. Examples of such data might include
historical information, typical usage scenarios, implementation strategies,
enhancement perceptions, problems reports, etc.

2.6 Decision Aids

Decision aids allow a user to assess an APSE function from a particular point of

view. Decision aids may combine the results of a number of assessors, each of
which is weighted based on its usefulness for the view being considered.

H-6

2.7 Monitored Experiments

Monitored experiments, based on model projects involving an aggregation of
APSE functions or tools, can be performed on APSEs or APSE components to
gather data in a systematic and controlled manner. These experiments can be
used for both qualitative and quantitative assessments of the functionality,
usability, and performance, as well as other characteristics of APSEs.

3 ASSESSOR CAPABILITIES

A number of assessor capabilitics have been identified as being important for
providing an APSE E&V capability. Recommendations for near-term assessors
are found below. The premise for near term attention is that E&V capabilities
can be acquired by assembling existing assessors or by developing the
assessors using existing, proven technology. They are ordered by acquisition
priority determined by the E&V team. Priorities are based on the importance to
the development of mission critical software, the availability of the APSE
functions to be evaluated, the significance of the attributes to be evaluated,
and the technical feasibility of developing the assessor. These assessors are:

Compilation System Evaluators

Target Code Generation Aids and Analysis Toolset Evaluators
Test Systems Evaluators

Requirements/Design Support Assessors

Configuration Management Support Evaluators

"Whole APSE" Evaluators

CAIS Evaluation and Validation Assessors

Distributed Systems Development and Runtime Support Evaluators
Distributed APSE Evaluators

. Transportability Evaluators
. Methodology Support Evaluators

. Interoperability Evaluators
. Multilingual APSE Evaluators

ORIV H WN -

[y
-

it
w N

3.1 Compilation System Evaluators

This section includes Compiler Evaluators, Code Generation Evaluators,
Program Library Systems Evaluvators and Runtime Systems Evaluators.

For the purposes of this document, the compilation system is defined as thosc
APSE components which are Ada-specific and are required for validation: the
compiler, the code gcnerator, the program library management system, and
the runtime support system. While each of these components has
characteristics which should be assessed individually, the assessment of their
combined functionality will be more critical to the successful development of
mission critical software.

The immcdiate criticality of asscssor devclopment for these four compilation
system componcnts is made evident by the many large-scale projects with
requirements for the use of Ada which are presently being procured or arc
planned for near-term procurement. These large-scale projects include the

H-7

Strategic Defense System, the NASA Space Station, the STARS program, Army
Tactical Command and Control System, Army WIS, and the ATF, ATA and LHX
programs being evaluated for common avionics systems under the auspices of
the JIAWG. The successful performance of these systems depends upon the
quality/extent of code generation support and execution support found in the
compilation system. APSE development teams are in the process of trying to
determine which products are of sufficient quality to support the
development of their complex systems. Tools to assist in these evaluations are
nceded now. See Appendix B for additional guidance for the tool developer in
this area.

3.1.1 Compiler Evaluators

Compiler evaluators provide capabilities which measure areas such as
compiler performance, code and/or space and/or time optimizations,
implementation of real-time embedded programming features, usability,
completeness of documentation, and completeness of configuration
management and control practices. The issues being probed include how
"good" arc the compilers, and in what ways are they good.

The Ada Compiler Evaluation Capability (ACEC) provides only the initial
evaluation technology required for Ada compilers. Available funding levels
have restricted the scope of that effort to something significantly less than
what is actually needed, so there is an immediate need to allocate additional
funds for the acquisition of compiler evaluation technology which is not
found in the ACEC. The ACEC Version 2, available since second quarter 1990,
provides for object code efficiency, code expansion size, and assessors 1o
determine the functional capabilities of symbolic debuggers, program library
management systems, and compilation systems diagnostic messages. It also
provides analysis tools to compare results of different systems and to analyze
the performance results from one system.

Additional urgent requirements exist for additional assessment of compiler
performance, real-time embedded programming features, usability, and other
aspects of compilation that cannot be directly assessed through examination of
object code.

3.1.2 Code Generation Evaluators

The generation of efficient code for embedded target processors is of prime
importance in the compilation system. Assessors should evaluate both target
and native host code generators for performance, efficiency, usability,
modifiability, and completeness of documentation.

3.1.3 Program Library Evaluators

Program Library Management Evaluator Systems include evaluators to verify
characteristics such as the completeness of documentation, performance,
efficiency, functional capabilities, and usability of APSE supplied program
library management systems, as examples.

3.1.4 Runtime Evaluators

Runtime evaluators are those which measure characteristics such as the
performance, efficiency, and usability of the runtime system. These would also
include evaluation of the completeness of documentation and configuration
management and control practices of the runtime system.

Ada Runtime evaluation is needed to evaluate the performance of target
runtime support systems (RTSS), typically a runtime executive and library of
runtime services. Mission critical software is particularly sensitive to
efficiency requirements as well as the amount of code needed for RTSS. The
ability to make crucial decisions about the capability of a particular Ada RTSS
to meet the demands of the application often determines the success or failure
of a mission critical project. Providing sound evaluators for RTSS is essential
to the success of both Ada and the mission critical systems to which it is
applied. Since one of the evaluated measures will include the required space
of the run time software, the ability to factor out unused run time services in
order to reduce the support library size is an important consideration.

3.2 Target Code Generation Aids and Analysis Toolset Evaluators

These evaluators will provide the capability to evaluate host-target system
cross-assemblers; host-based target linkers and loaders; host-based target
system instruction-level simulators/emulators; host-based target-code
symbolic debuggers; and host-based target system instrumentation interfaces
which provide visibility into target processes during mission critical software
execution.

3.3 Test Systems Assessors

These assessors will examine the ability of the APSE or APSE component to
support and facilitate the planning, development, execution, evaluation and
documentation of tests of mission critical software. See Appendix C for
additional guidance for the tool developer in this area.

3.4 Requirements/Design Support Assessors

These evaluators will measure the suitability and effectiveness of various
software definition, specification, and design tools. This will specifically
include evaluators of Ada Program Design Language (PDL) implementations
and/or guidelines in the use of Ada as a PDL. See Appendix D for additional
guidance for the tool developer in this area.

3.5 Configuration Management Support Evaluators

These evaluators will examine the performance, usability, and completeness of

the APSE or APSE component functionality related to controlling the contents
of software systems. This will include monitoring the status, preserving the

H-9

integrity of released and developing versions, and controlling the effects of
changes throughout the lifetime of the software system.

3.6 Whole APSE Assessors

These assessors address the APSE macro characteristics, such as overall
performance, efficiency, usability, and completeness of the APSE as a whole.
Emphasis is given to the “integration services" provided by the APSE
infrastructure, which makes the APSE more than a collection of tools. See
Appendix E for additional guidance for the tool developer in this area.

3.7 CAIS (Common APSE Interface Set) Evaluation and CAIS
Validation Assessors

CAIS validation assessors will determine if the CAIS is in conformance with the
DoD Standard.

The CAIS evaluation assessment capability is to be developed to assure that the
implementations of the CAIS will provide acceptable performance and other
characteristics not covered by validation.

3.8 Distributed Systems Development and Runtime Support
Evaluators

These evaluators will assess the ability of the APSE or APSE Components to
support software development for distributed processing systems, and to
provide runtime support for distributed processing systems.

3.9 Distributed APSE Evaluators

These evaluators will assess the ability of two or more distributed APSEs to
communicate in cooperative ways in supporting the development of mission
critical software at diverse geographical locations.

3.10 Transportability Evaluators

These evaluators assess the ease with which an APSE or APSE component can
be moved to other specified hosts or APSEs without change in functionality.
Transportability is measured as the degree to which this relocation can be
accomplished without reprogramming. .

3.11 Methodology Support Evaluators

These evaluators assess the extent to which the APSE or APSE components
support software development methodologies.

3.12 Interoperability Evaluators

These evaluators assess the ability of an APSE to exchange database objects and
their relationships with other specified APSEs in forms usable by APSE
components and user programs without conversion. Interoperability is
measured as the degree to which this exchange can be accomplished without
conversion.

3.13 Multilingual APSE Evaluators

These evaluators assess the extent to which the APSE or APSE components
support the analysis/development of mission critical softwarc where multiple
source languages are involved. Multiple source language support includes the
construction of Ada programs which interface to wunits written in other
languages; and/or the support for the maintenance of files of programs not
written in Ada (such as documentation); and/or support for programs written
completely in languages other than Ada (e.g., existing programs written in
FORTRAN, Pascal, C, LISP, etc.).

4 CONCLUSION

While the E&V Team believes current assessment products to be the successful
beginnings of APSE and APSE component assessor technology, they are by no
means complete or mature. Coordinated efforts must continue to evolve the
existing assessors and develop additional assessment technology. For the DoD
to be successful in the continued development of MCCS, assessment technology
must be infused into the mainstream of the software engineering discipline.
Billions of dollars can be saved by selecting APSEs and APSE components based
on a standard and controlled assessment of the myriad APSEs and APSE
components which do/will exist. Protracted or repeated fits and starts due to
APSE inadequacies can mean the difference between the ultimate success or
failure of MCCS developments.

ACEC
AJPO
APSE
AVO

CAIS

JIAWG
KAPSE
KIT
KITIA
NASA
PDL
REQWG
RFP
RTSS
STARS
WIS

WWMCCS

APPENDIX A
ACRONYMS

Ada Compiler Evaluation Capability

Ada Joint Program Office

Ada Programming Support Environment

Ada Validation Organization

Common APSE Interface Set

Evaluation and Validation

Joint Integrated Avionics Working Group
Kernel Ada Programming Support Environment
KAPSE Interface Team

KAPSE Interface Team Industry/Academia
National Aecronautics and Space Administration
Program Design Language

Requirements Working Group

Request for Proposal

Runtime Support System

Software Technology for Adaptable, Reliable Systems
WWMCCS Information System

World Wide Military Command and Control System

APPENDIX B
COMPILATION SYSTEM EVALUATORS

Purpose:

These assessors examine the quality of a Compile System tool set. For evaluation
purposes, an Ada compile system is delineated into 4 primary capabilities.
These are: the compiler, code generator, program library manager, and target
runtime system. Each are more thoroughly discussed below under these
separate categories.

The attributes have been listed in prioritized order from highest to lowest
ranking. The listings themselves are based upon the attributes listed within
the E&V Reference Manual. The specific Reference Manual sections are listed
next to each attribute. All Reference Manual attributes were initially
considered for inclusion in all four of the four compile system capability
sections. Where an attribute was unrelated to a capability or of a low priority,
it was removed from the listing. Next, where the technology for the
assessment of an attribute within a category existed and was covered within
the E&V Guidebook it was also removed from the list. Thus the below lists
denote those attributes that are important within a compile system capability
area and require technology development.

Functionality to be Assessed:

All functions associated with an Ada Compile System will be assessed. In
particular the compile system as defined in the E&V Reference Manual section
5.12. This tool set is then examined by its four primary capabilities of:
Compiler, Code Generator, Program Library Manager, and target Runtime
System.

COMPILER EVALUATORS
Purpose:

These assessors will examine the quality of the Compiler within a compile
system tool set. These are assessors in addition to those already defined in E&V
Reference Manual section 5.12 in general and 5.12.2 in particular. The
Compiler part of a Compile System is only those aspects of the tool sct whosc
primary task is syntax and semantics checking, and intermediate codec
generation. All issues involved in final program execution characteristics or
other standard Compile System capabilities or characteristics are covered
under one of the other Compile System categories.

Functionality to be Assessed:

All functions associated with Ada source compiling will be assessed. In
particular the compiler as defined in the E&V Reference Manual section 5.12.2
and the E&V Reference Manual Function references listed in sections 7.1.6.7 on
Compilation and 7.3.1.15 on Syntax and Semantics Checking.

Attributes to be Assessed:
1. Accuracy [RM 6.4.1]
Possible Approaches:

Method: Benchmarks, test and test suites, and monitored experiment.

Input: Benchmarks, monitored experiment, compile system, and product
documentation.

Process: Execute benchmark tests and perform the experiment, noting
failure results.

Output: A measure of the accuracy of the compiler.

2. Document Accessibility [RM 6.4.13]
Possible Approaches:

Method: Questionnaire.

Input: Questionnaire, compiler documentation, and vendor consultation.

Process: Check off documents available and their quality or
questionnaire.

Output: A list of documents and a rough measure of their quality.

3. Anomaly Management, Fault or Error Tolerance, Robustness [RM 6.4.2]
Possible Approaches:

Method: Benchmarks, test and test suites, and questionnaire.

Input: Compiler, test suites, and questionnaire.

Process: Compile test suites, and note error handling/recovery, then
complete questionnaire using test suite results.

Output: Completed questionnaire for use in compiler comparisons or
single product general rating.

4. Operability, Communicativeness [RM 6.4.20]
Possible Approaches:

Method: Questionnaire.

Input: Compiler, documentation, and questionnaire.

Process: Complete the questionnaire by both interactively executing the
compiler and by finding questionnaire answers in the
documentation.

Output: A completed questionnaire useful for comparing compilers for
capability existence and extent of operability offered.

5. System Compatibility [RM 6.4.34]
Possible Approaches:
Method: Questionnaire.

Input: Qucstionnairc, compiler, product documentation, and applicable
standards.

Process: Complete questionnairc by examining; compiler and
documecntation.

Output: Complctcd qucstionnairc for usc in compiler comparisons or
single product gencral rating.

6. Distributedness [RM 6.4.12]
Possible Approaches:

Method: Questionnaire.

Input: Questionnaire, compiler, and product documentation.

Process: Complete questionnaire by examining; product and
documentation.

Output: Completed questionnaire for use in compiler comparisons or
single product general rating.

7. Commonalty (Data and Communication) [RM 6.4.7]
Possible Approaches:

Method: Guidelines and questionnaire.

Input: Guidelines, questionnaire, compiler, product documentation, and
applicable standards.

Process: Use guidelines to complete questionnaire. Compiler will be
examined using both the actual software product and its
documentation. The compiler will be examined for adherence to
established data representation and communication standards.

Output: Completed questionnaire for use in compiler comparisons or
single product general rating.

CODE GENERATION EVALUATORS
Purpose:

These assessors will examine the quality of the Code Generator generated® code,
within a compile system tool set. These are assessors in addition to those
already defined in E&V Reference Manual section 5.1 in general and 5.12.3 in
particular. The Code Generator part of a Compile System is only those aspects
of the tool set whose primary task is to generate executable code. In general
these attributes examine the runtime performance characteristics of the
generated code. All issues involved in runtime environment services, sourcc
translation, or source management are covered under one of the other Compilc
System categories.

Functionality to be Assessed:

All functions associated with a compiler's Code Generation capability will bc
assessed. In particular the code generator as defined in the E&V Reference
Manual section 5.12.3 and the E&V Reference Manual Function references
listed in section 7.1.6.7 on Compilation.

Attributes to be Assessed:
1. Accuracy [RM 6.4.1]
Possible Approaches:

Method: Benchmarks, test and test suites, and monitored experiment.

Input: Self-checking Benchmarks, monitored experiment, compile
system, and product documentation.

Process: Execute self-checking benchmark tests to generate all possible
machine instructions and perform the experiment, noting failure
results.

Output: A measure of the accuracy of the code generator. ‘
2. Reconfigurability [RM 6.4.24)
Possible Approaches:

Method: Metrics and questionnaire.

Input: Metrics, questionnaire, compile system product, and product
documentation.

Process: Examine software product to determine to what extent those
aspects supporting software reconfigurability are supported by the
product.

Output: Completed questionnaire and metric rating for use in generated
codec comparisons or single product general rating.

3. Anomaly Management, Fault or Error Tolerance, Robustness [RM 6.4.2]
Possible Approaches:

Method: Benchmarks, test and test suites, and questionnaire.

Input: Compiler, test suites, questionnaire, compile system product and
product documentation.

Process: Execute test suites and note error handling/recovery, then
complete questionnaire using test suite results.

Output: Completed questionnaire and metric rating for use in generated
code comparisons or single product general rating.

4. Distributedness [RM 6.4.12]
Possible Approaches:

Method: Questionnaire.

Input: Questionnaire, compile system product, and product
documentation.

Process: Complete questionnaire by examining; product and
documentation.

Output: Completed questionnaire for use in generated code comparisons
or single product general rating.

5. Integrity [RM 6.1.2]
Possible Approaches:

Method: Questionnaire and monitored experiment.

Input: Questionnaire, monitored experiment, compile system product,
and product documentation.

Process: Complete the questionnaire using information found in the
documentation and information obtained by performing the
monitored experiment.

Output: Completed questionnaire for use in generated code comparisons
or single product general rating.

6. Document Accessibility [RM 6.4.13]
Possible Approaches:

Method: Questionnaire.

Input: Questionnaire, compile system documentation, and vendor
consultation.

Process: Check off documents available and their quality on
questionnaire.

Output: A list of documents and a rough measure of their quality.

7. Rehostability [RM 6.4.25]
Possible Approaches:

Method: Questionnaire and monitored experiment.

Input: Questionnaire, monitored experiment, compile system product,
and product documentation.

Process: Complete the questionnaire using information found in the
documentation and information obtained by performing the
monitored experiment.

Output: Completed questionnaire for use in generated code comparisons
or single product general rating.

8. System Compatibility (RM 6.4.34]
Possible Approaches:

Method: Questionnaire.

Input: Questionnaire, compile system product, product documentation,
and applicable standards.

Process: Examine software product to determine to what extent those
aspects supporting software reconfigurability are supported by the
product.

Output: Completed questionnaire for use in generated code comparisons
or single product general rating.

PROGRAM LIBRARY EVALUATORS
Purpose:

Thesc assessors will examine the quality of the Program Library Manager
within a compile system tool set. These are assessors in addition to those
already defined in E&V Reference Manual section 5.12 in general and 5.12.5 in
particular. The Program Library part of a Compile System is only those aspects
of the tool set whose primary task is to manage or control an Ada program
library system. All issues involved in source translation, final program
cxccution characteristics or other standard Compile System capabilities or
characteristics are covered under one of the other Compile System categories.

Functionality to be Assessed:

All functions associated with Ada Program Library Management will be
assessed. In particular the Program Library Manager as defined in the E&V
Refcrence Manual section 5.12.5 and the E&V Reference Manual Function
rcference listed in section 7.2.1.7 on Program Library Management.

Attributes to be Assessed:
1. Reliability [RM 6.1.3)
Possible Approaches:

Method: Benchmarks, test and test suites, and monitored experiment.

Input: Benchmarks, monitored experiment, compile system, and product
documentation.

Process: Execute benchmark tests and perform the experiment, noting
failure results.

Output: A measure of the reliability of the program library product.

2. Integrity [RM 6.1.2]
Possible Approaches:

Method: Questionnaire and monitored experiment.

Input: Questionnaire, monitored experiment, compile system, and
product documentation.

Process: Complete the questionnaire using information found in the
documentation and information obtained by performing the
monitored experiment.

Output: Completed questionnaire for use in program’ library
comparisons or single product general rating.

3. Accuracy [RM 6.4.1]
Possible Approaches:

Mcthod: Bcnchmarks, test and test suitcs, and monitored experiment.
Input: Benchmarks, monitored experiment, compile system, and product
documentation.

Process: Execute benchmark tests and perform the experiment, noting
failure rcsults.
Output: A mcasurc of the accuracy of the program library managecr.

4. Efficiency [RM 6.1.1]
Possible Approaches:

Method: Benchmarks, test and test suites, and monitored experiment.
Input: Benchmarks, monitored experiment, and compile system.
Process: Execute benchmarks and complete experiment noting the time
to complete tasks with respect to difficulty in performing task.
Output: A measure of the efficiency of the program library product.

5. Maintainability [RM 6.2.2]
Possible Approaches:

Method: Questionnaire and monitored experiment.

Input: Questionnaire, monitored experiment, compile system, and
product documentation.

Process: Perform experiment completing questionnaire with results, the
ecase of correcting failures.

Output: A measure of the maintainability of the program library
product.

6. Granularity [RM 6.4.17]
Possible Approaches:

Method: Questionnaire.

Input: Questionnaire, compile system, and product documentation.

Process: Complete questionnaire noting the number of distinct
capabilities offered.

Output: A measure of the granularity of the program library product.
This measure should be paired with a measure of Power in product
comparisons.

7. Operability, Communicativeness [RM 6.4.20]
Possible Approaches:

Method: Questionnaire.

Input: Compile system, product documentation, and qucstionnaire.

Process: Complete the questionnaire by both interactively exercising
the program library and by finding questionnaire answers in the
documentation.

Output: A completed questionnaire useful for comparing program

library products for capability existence and extent of operability
offered.

8. Vecrifiability [RM 6.2.3]
Possible Approaches:

Method: Questionnaire and monitored experiment.

Input: Questionnaire, monitored experiment, compile system, and
product documentation.

Process: Adapt the tests within the experiment to test the current
program library. Perform the experiment by both adapting the tests
and executing them.

Output: A measure of the verifiability/testability of the program library
product.

9. Distributedness [RM 6.4.12]
Possible Approaches:

Method: Questionnaire.

Input: Questionnaire, compile system, and product documentation.

Process: Complete questionnaire by examining; program library and
documentation.

Output: Completed questionnaire for use in program library
comparisons or single product general rating.

10. Reconfigurability
Possible Approaches:

Method: Metrics and questionnaire.

Input: Metrics, questionnaire, compile system, and product
documentation.

Process: Complete the questionnaire noting those aspects of the
program library that lend themselves to reconfiguration. Rate these
characteristics using the metric algorithms.

Output: A measure of the ease of reconfiguration of the program library
product.

11. Rehostability
Possible Approaches:

Method: Questionnaire and monitored experiment.

Input: Questionnaire, monitored experiment, compile system, and
product documentation.

Process: Complete the questionnaire using information found in the
documentation and information obtained by performing the
monitored experiment.

Output: Completed questionnaire for use in program library
comparisons or single product gcncral rating.

12. Retargetability
Possible Approaches:

Method: Questionnaire and monitored experiment.

Input: Questionnaire, monitored experiment, compile system, and
product documentation.

Process: Complete the questionnaire using information found in the
documentation and information obtained by performing the
monitored experiment.

Output: Completed questionnaire for use in program library
comparisons or single product general rating.

RUNTIME EVALUATORS
Purpose:

These assessors will examine the quality of a Compiler's accompanying
Runtime System within a compile system tool set. These are assessors in
addition to those already defined in Reference Manual section 5.12 in general
and 5.12.6 in particular. The Runtime System part of a Compile System is only
those aspects of the tool set whose primary task is to support non-generatcd
code language features for final program execution. The specific features and
support provided will vary depending on the compile system. Specifically,
features will vary between code generator and runtime environment
depending on both the compile system and a particular target configuration.
All issues involved in other characteristics of a Compile System are covcred
under one of the other Compile System categories.

Functionality to be Assessed:

All functions associated with an Ada Runtime System will be assessed. In
particular the runtime system as defined in the E&V Reference Manual section
5.12.6 and the E&V Reference Manual Function references listed in sections
7.2.3.2 on Input/Output Support and 7.2.3.5 on Runtime Environment.

Attributes to be Assessed:
1. Accuracy [RM 6.4.1}
Possible Approaches:

Mecthod: Benchmarks, test and test suites, and monitored experiment.

Input: Benchmarks, monitored experiment, compile system, and product
documentation.

Process: Execute benchmark tests and perform the experiment, noting
failure results.

Output: A measure of the accuracy of the runtime system.

H-21

2. Processing (Execution) Effectiveness [RM 6.4.22)
Possible Approaches:

Method: Benchmarks, test, and test suites.

Input: Benchmarks, runtime system, and product documentation

Process: Execute benchmarks and note results.

Output: A measure of the run-time performance and efficiency of the
runtime system product.

3. Reliability [RM 6.1.3]
Possible Approaches:

Method: Benchmarks, test and test suites, and monitored experiment.

Input: Benchmarks, monitored experiment, runtime system, and product
documentation.

Process: Execute benchmarks and perform the experiment, noting
failure results.

Output: A measure of the reliability of the runtime system product.

4. Verifiability [RM 6.2.3]
Po”ssible Approaches:

Mcthod: Questionnairc and monitored experiment.

Input: Questionnaire, monitored experiment, runtime system, and
product documentation.

Process: Adapt the tests within the experiment to test the current
runtime system. Perform the experiment by both adapting the tests
and executing them.

Output: A measure of the verifiability/testability of the runtime system
product.

5. Capacity [RM 6.4.6]
Possible Approaches:

Method: Benchmarks, test, and test suites.

Input: Benchmarks, runtime system, and product documentation.

Process: Execute benchmarks and note limits reached. Also note any
documented limitations.

Output: A measure of the capacity limits of the runtime system product.

6. Operability, Communicativeness [RM 6.4.20]
Possible Approaches:
Mecthod: Questionnaire.
Input: Runtime system, product documentation, and questionnaire.

Process: Complete the questionnaire by both intcractively exccuting the
product and by finding Questionnaire answers in the documentation.

H-22

Output: A completed questionnaire useful for comparing runtime system
products for capability existence and extent of operability offered.

7. Power [RM 6.4.21]
Possible Approaches:

Method: Questionnaire.

Input: Runtime system, product documentation, and questionnaire.

Process: Complete the questionnaire by confirming that documented
capabilities do truly exist within the product.

Output: A completed questionnaire useful for comparing runtime system
products for capability existence and extent of capabilities offered.

8. Reconfigurability [RM 6.4.24]
Possible Approaches:

Method: Metrics and questionnaire.

Input: Metrics, questionnaire, runtime system, and product
documentation.

Process: Complete the questionnaire noting those aspects of the product
that lend themselves to reconfiguration. Rate these characteristics
using the metric algorithms.

Output: A measure of the ease of reconfiguration of the runtime system.

9. System Compatibility [RM 6.4.34]
Possible Approaches:

Method: Questionnaire.

Input: Questionnaire, runtime system, product documentation, and
applicable standards.

Process: Complete questionnaire by examining; product and
documentation.

Output: Completed questionnaire for use in runtime system comparisons
or single product general rating.

10. Usability [RM 6.1.5]
Possible Approaches:

Method: Questionnaire and monitored experiment.”

Input: Questionnaire, monitored experiment, and the runtime systcm.

Process: Perform the experiment, especially noting the ease with which
the correct command/parameter is found and the ease of executing
the capability. The time to perform the experiment is also important
input to the questionnaire as it provides a rough measure as to the
ease of use and power offered by the runtime system.

Output: Completed questionnaire for use in runtime system comparisons
or single product general rating showing how "easy" this product
was to use.

H-23

11. Correctness [RM 6.2.1]
Possible Approaches:

Method: Benchmarks, test, and test suites.

Input: Benchmarks, runtime system, and MIL-STD-1815A.

Process: Execute benchmarks noting failures. Of particular interest are
results of large test executions and tests lasting large amounts of
time. (This is in addition to ACVC)

Output: A measure of the general correctness of the runtime system
product.

12. Commonalty (Data and Communication) [RM 6.4.7]
Possible Approaches:

Method: Guidelines and questionnaire.

Input: Guidelines, questionnaire, runtime system, and product
documentation.

Process: Use guidelines to complete questionnaire. Runtime systems will
be examined by both exercising the runtime system and examining
the documentation. The runtime system will be examined for
adherence to established data representation and communication
standards.

Output: Completcd questionnaire for use in runtime system comparisons
or singlc product general rating.

13. Granularity [RM 6.4.17]
Possible Approaches:

Method: Questionnaire.

Input: Questionnaire, runtime system, and product documentation.

Process: Complete questionnaire noting the number of distinct
capabilities offered.

Output: A measure of the granularity of the runtime system. This value
should be paired with a measure of Power in runtime system
comparisons.

14. Maintainability [RM 6.2.2]

Possible Approaches:

Method: Questionnaire and monitored experiment.

Input: Questionnaire, monitored experiment, runtime system, and
product documentation.

Process: Perform experiment completing questionnaire with results, the
casc of correcting failures.

Output: A measurc of the maintainability of the runtime system.

H-24

15. Document Accessibility [RM 6.4.13]
Possible Approaches:

Method: Questionnaire

Input: Questionnaire, runtime system documentation, and vendor
consultation.

Process: Check off documents available and their quality on
questionnaire.

Output: A list of documents and a rough measure of their quality.

16. Transportability [RM 6.3.4]
Possible Approaches:

Method: Questionnaire, metrics, and monitored experiment.

Input: Questionnaire, metrics, monitored experiment, runtime system,
product documentation, and applicable standards.

Process: Examine runtime system for conformance to applicable
interface standards. Execute experiment attempting to port the
product to another similar platform.

Output: A measure Of the transportability of the runtime system.

H-25

APPENDIX C
TEST SYSTEM ASSESSORS

Purpose

These assessors examine the ability of the APSE or APSE component(s) to
support and facilitate the planning, development, execution, evaluation, and
documcntation of tests of mission critical software.

Functionality to be Assessed

Test System Capabilities including Static Analyzers, Tool Building Services, Test
Building Scrvices, Test Description and Preparation Services, Test Execution
Scrvices, Test Analysis Services, and Decision Support Services (see Guidebook
(GB) Table 7.1-1 and Reference Manual (RM) Sections 5.14 and 7.3).

Attributes to be Assessed

1. Correctness [RM 6.2.1]/Verifiability [RM 6.2.3] of Test Building Services, Test
Exccution Services, and Test Analysis Services.)

Possible Approaches:

Mecthod(s): "Test Suites” of Programs w/Seeded Errors

Input: Test Building Services, Test Execution Services, Test Analysis
Scrvices, Programs w/Secded Errors

Process: Use Test Building Scrvices to develop test data. Execute
programs w/sccded errors on test data and use Test Analysis Services
to determine whether or not tests were passed. Determine errors.

Output: List of errors found vs. seeded errors

Important Assessor Attributes: Seeded errors should represent typical or
likely errors for applications of interest.

2. Survivability [RM 6.1.4]/Reliability [RM 6.1.3] of Test Execution Services.
Possible Approaches:

Mcthod(s): "Test Suites” to Kill the System

Input: Test Exccution Services and "Test Suites" including software and
data.

Process: Execute test suites on data.

Output: Record of system "hangs and crashes".

Important Assessor Attributes: Test Suites should be designed to
maliciously attack underlying system (e.g., overwrite memory,
overload 1/O channels, result in thrashing, etc.)

3. Efficiency [RM 6.1.1] of Static Analyzers, Test Building Services, Test
Exccution Services, and Test Analysis Services.

Possible Approaches:

Mcthod(s): Tecst Suitcs/Benchmarks - wide varicty of programs

H-26

Input: Static Analyzers, Test Building Services, Test Execution Scrvices,
Test Analysis Scrvices, Test Suites

Process: Apply Testing Capabilities to Test Suites

Output: Performance measurements for testing capabilities on variety of
programs

Important Asscssor Attributes: Programs should vary in sizce.
complexity, usec of language constructs, ctc.

4. Usability [RM 6.1.5)/Interoperability [RM 6.3.2] of Test System Components
individually and as a "whole".

Possible Approaches:

Method(s): Monitored Experiments & Questionnaires

Input: Test System Components, Experiment Procedures

Process: Conduct Experiment as instructed by procedures

Output: Completed Questionnaire describing "ease of use" or lack thereof
of test system when used as individual components and as a whole.

Important Assessor Attributes: Experiment should simulate intended use
of test system -- typical users, typical software to be tested, etc.

5. Integrity [RM 6.1.2) of Test Execution Services, Test Analysis Services, and
Decision Support Services.

Possible Approaches:

Method(s): 7?7

Input:

Process:

Output:

Important Assessor Attributes:

H-27

APPENDIX D
REQUIREMENTS/DESIGN SUPPORT ASSESSORS

Purpose

These evaluators measure the suitability and effectiveness of various software
dcfinition, specification, and design tools. This specifically includes evaluators
of Ada Program Design Language (PDL) implementations and/or guidelines in
thc usc of Ada as a PDL.

Functionality to be Assessed (Sections from E&V Reference Manual - RM)

Strategic Planning (RM 4.1)
Enterprisc Modeling (RM 5.9.3)
Identification of Strategic Systems Opportunities (RM ?)
Analysis (RM 17.3)
Goals and Problems (RM 7)
Technology Impact (RM ?)
Critical Success Factors (RM ?)
Simulation and Modeling (RM 7.3.2.3)
Documentation (RM 5.8, 7.1.2.3)
Operational Concept Document (RM
Interface to Requirements Engineering Tool(s) (RM 4.2, 4.3)

Requirements Engineering (RM 4.2, 4.3)

Requirements Specification Language (RM 5.9.1, 5.9.2, 7.1.6.1, 7.1.6.2)
Allocation of Requirements to Hardwarc and Software (RM ?)
Process Modeling (RM 5.9.5, 7.3.2.3)

Data Flow

Control Flow
Data Modeling (RM 5.9.4, 7.3.2.3)

Data Structure

Entity-Relationship
User Interface Simulation/Prototyping (RM 5.9.6, 5.9.7, 7.3.2.1, 7.3.2.2)
Analysis (RM 7.3)

Data Flow (RM 7.3.1.3)

Functional (RM 7.3.1.4)

Requirements Traceability (RM 7.3.1.6)

Testability (RM 7.3.1.7)

Quality Measurement (RM 7.3.1.9)

Consistency/Completeness (RM 7.3.1.12, 7.3.1.13)

Maintainability (RM 7.3.1.18)

Auditing (RM 7.3.1.22)

Stability (RM ?)

Simulation and Emulation (RM 5.9.6, 7.3.2.1, 7.3.2.3, 7.3.2.13)
Documentation (RM 5.8, 7.1.2.3)

Rcquircments Spccification(s) (RM 4.2.2, 4.3.2)
Intcrface to Design Engineering Tool(s) (RM 4.2, 44, 45, 7.1.7.1)

Design Engineering (RM 4.2, 4.4, 4.5)

Hardware Design (CAD) (RM ?)
Process Modecling (RM 5.9.5, 7.3.2.3)

H-28

Real-Time Support (RM 7.3.2.17)
Control Specification
State Transition
Timing Analysis (Dead Lock, Racing) (RM 7.3.2.14)
Language-Specific Support (Booch/Buhr, Textual PDL)
Data Modeling (RM 5.9.4, 7.3.2.3)
Normalization (RM ?)
Report/Screen Design (RM 7.1.1.3, 7.1.5, 7.3.2.4)
Analysis (RM 7.3)
Interface (RM 7.3.1.5)
Requirements Traceability (RM 7.3.1.6)
Testability (RM 7.3.1.7)
Test Condition (RM 7.3.1.8)
Quality Measurement (RM 7.3.1.9)
Complexity Measurement (RM 7.3.1.10)
Consistency/Completeness (RM 7.3.1.12, 7.3.1.13)
Reusability Analysis (RM 7.3.1.14)
Maintainability (RM 7.3.1.18)
Invocation (RM 7.3.1.19)
Scanning (RM 7.3.1.20)
Structured Walkthrough (RM 7.3.1.21)
Auditing (RM 7.3.1.22)
Type (RM 7.3.1.27)
Units (RM 7.3.1.28)
Formal Verification (RM 7.3.3)
Documentation (RM 5.8, 7.1.2.3)
Design Document(s) (RM 4.2.2, 442, 4.5.2)
Test Plan(s) (RM 4.4.3)
Programmers' Manual(s) (RM 4.5.6)
Users' Manual(s) (RM 4.4.6, 4.5.6)
Interfaces to Application Generator(s) (RM 4.6, 5.11, 7.1.7.3)
Source Code (RM 5.11.1)
Database Schema (RM 5.11.2)
Report (RM 5.11.3)
Screen (RM 5.11.4)
Requirements Reconstruction (RM 7.1.7.2)

Generic Interfaces (RM 6.3.2)
Document Production System(s) (RM 5.8, 7.1.1, 7.1.2)
Project Management System(s) (RM 5.5, 7.2.2)
Configuration Management System(s) (RM 5.7, 7.2.2.7)
Configuration Control (RM 5.7.2)
Version Control (RM 5.7.4)
Test System(s) (RM 5.14, 7.3)

H-29

APPENDIX E
WHOLE APSE ASSESSORS

Purpose

These assessors will examine the quality of an APSE, as a whole, in support of a
project team across the entire life cycle of software development and

maintenance, or in support of a project team as it performs a major "chunk" of
activities.

Functionality to be Assessed

All functions associated with software development, but especially the
"integration services" provided by the APSE infrastructure, which make the
APSE more than just a collection of tools. These services support data
integration, presentation integration, interoperability integration, process
integration, coordination, and monitoring, as discussed in Section 3.3 of the
E&V Reference Manual.

Attributes to be Assessed

1. Performance and Design attributes [GB 6.1,6.2] including Efficiency,
Completeness, Integrity, and Usability of the APSE as a whole in support of an
cntire team across the entire life cycle, and Integration [GB 6.4.x].

Possible Approaches:

Method(s): Structured experiments built around model projects partially
completed.

Input: Model project documentation and code, and experiment scenario
scripts.

Process: Follow the scripted scenarios based on the model project and
answer the questions posed.

Important Assessor Attributes: Efficiency, as influenced by the effort
required of the evaluation team in establishing a valid basis for
judging the performance of the APSE. Adaptability, as indicated by
the case with which the evaluators can expand and modify the
scripted scenario to address aspects of performance that are of prime
importance to them.

2. Adaptation attributes [GB 6.3] including Expandability, Augmentability,
Interoperability, and Transportability.

Possible Approaches:

Method(s): Structured experiments built around model projects and a
changing suite of tools.

Input: Model project documentation and code, and scenario scripts.

Process: Follow the scripted scenarios bascd on the model project and
answer the questions posed.

Important Assessor Attributes: Efficiency, as influenced by the effort
required of the evaluation team in establishing a valid basis for

H-30

judging the adaptation qualities of the APSE. Adaptability, as
indicatcd by the casc with which thc evaluators can expand and

modify the scripted scenario to address aspects of adaptation that are
of prime importance to ihem.

H-31

APPENDIX F

E&V TEAM REQUIREMENTS WORKING GROUP MEMBERSHIP

Becky Abraham
Jerry Brookshire
Mike Burlakoff
Peter Clark

Bard Crawford
Dan Eilers

Jay Ferguson
Fred Francl

Greg Gicca
Marlene Hazle
Alan Impicciche
Elizabeth Kean
Pat Lawlis

Tom Leavitt
Ronnie Martin
Sandi Mulholland
Helen Romanowsky
Lloyd Stiles
Nelson Weiderman

US Air Force

Texas Instruments Corporation
Southwest Missouri State University
TASC

TASC

Irvine Compiler Company
National Security Agency
Sonicraft, Inc.

Sanders Associates

MITRE Corp.

US Navy

US Air Force

US Air Force

Boeing Military Airplanes
Purdue University

Rockwell International
Rockwell International

US Navy

Software Engineering Institute

H-32

APPENDIX |

MINUTES
OF THE
EVALUATION AND VALIDATION TEAM
GENERAL SESSION

5-7 DECEMBER 1988

The.task for the Evaluation and Validation of Ada Programming Support
Environments (APSEs) is sponsored by the Ada Joint Program Office (AJPO).

I-1

TABLE OF CONTENTS

Section

1.0 MONDAY, 5 DECEMBER 1988« .+ ¢ ¢ v v ¢ ..
.1 Opening Remarks ¢ . . ¢« ..
.2 Rockwell’s Software Engineering Environment
.3 Federal Mandate for Evaluation and Validation
.4 AdaGEN: The CASE Tool for Ada on the PC

TUESDAY, 6 DECEMBER 1988 & ¢ ¢ v ¢ ¢ v o o
.1 Evaluation and Validation (E&V) Reference System

Update & . ¢ o e e e e e e e e e e e e e e e
2 Report on Software Development Environments

Conference ¢ ¢ v